doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction.">

tidyvpc: VPC Percentiles and Prediction Intervals (original) (raw)

Perform a Visual Predictive Check (VPC), while accounting for stratification, censoring, and prediction correction. Using piping from 'magrittr', the intuitive syntax gives users a flexible and powerful method to generate VPCs using both traditional binning and a new binless approach Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction.

Version:

1.5.2

Depends:

R (≥ 3.5.0)

Imports:

data.table (≥ 1.9.8), magrittr, quantreg (≥ 5.51), rlang (≥ 0.3.0), methods, mgcv, classInt, cluster, ggplot2, stats, fastDummies, utils, egg

Suggests:

dplyr, KernSmooth, knitr, R.rsp, nlmixr2, shiny, remotes, vpc, rmarkdown, testthat (≥ 2.1.0), vdiffr (≥ 1.0.0)

Published:

2024-11-21

DOI:

10.32614/CRAN.package.tidyvpc

Author:

Olivier Barriere [aut], Benjamin Rich [aut], James Craig ORCID iD [aut, cre], Samer Mouksassi [aut], Bill Denney ORCID iD [ctb], Michael Tomashevskiy [ctb], Kris Jamsen [ctb], Certara USA, Inc. [cph, fnd]

Maintainer:

James Craig <james.craig at certara.com>

BugReports:

https://github.com/certara/tidyvpc/issues

License:

MIT + file

URL:

https://github.com/certara/tidyvpc

NeedsCompilation:

no

Materials:

README NEWS

In views:

Pharmacokinetics

CRAN checks:

tidyvpc results