doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction.">

tidyvpc: VPC Percentiles and Prediction Intervals (original) (raw)

Perform a Visual Predictive Check (VPC), while accounting for stratification, censoring, and prediction correction. Using piping from 'magrittr', the intuitive syntax gives users a flexible and powerful method to generate VPCs using both traditional binning and a new binless approach Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction.

Version: 1.5.2
Depends: R (≥ 3.5.0)
Imports: data.table (≥ 1.9.8), magrittr, quantreg (≥ 5.51), rlang (≥ 0.3.0), methods, mgcv, classInt, cluster, ggplot2, stats, fastDummies, utils, egg
Suggests: dplyr, KernSmooth, knitr, R.rsp, nlmixr2, shiny, remotes, vpc, rmarkdown, testthat (≥ 2.1.0), vdiffr (≥ 1.0.0)
Published: 2024-11-21
DOI: 10.32614/CRAN.package.tidyvpc
Author: Olivier Barriere [aut], Benjamin Rich [aut], James Craig ORCID iD [aut, cre], Samer Mouksassi [aut], Bill Denney ORCID iD [ctb], Michael Tomashevskiy [ctb], Kris Jamsen [ctb], Certara USA, Inc. [cph, fnd]
Maintainer: James Craig <james.craig at certara.com>
BugReports: https://github.com/certara/tidyvpc/issues
License: MIT + file
URL: https://github.com/certara/tidyvpc
NeedsCompilation: no
Materials: README, NEWS
In views: Pharmacokinetics
CRAN checks: tidyvpc results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=tidyvpcto link to this page.