doi:10.1198/jasa.2011.tm09771>.">

tsissm: Linear Innovations State Space Unobserved Components Model (original) (raw)

Unobserved components time series model using the linear innovations state space representation (single source of error) with choice of error distributions and option for dynamic variance. Methods for estimation using automatic differentiation, automatic model selection and ensembling, prediction, filtering, simulation and backtesting. Based on the model described in Hyndman et al (2012) <doi:10.1198/jasa.2011.tm09771>.

Version: 1.0.2
Depends: R (≥ 4.1.0), Rcpp (≥ 0.12.9), tsmethods (≥ 1.0.0)
Imports: TMB (≥ 1.7.20), methods, tsaux, tsdistributions, zoo, xts, copula, flextable, data.table, sandwich, nloptr, RTMB, viridisLite, future, future.apply, progressr
LinkingTo: Rcpp (≥ 0.12.9), TMB, RcppEigen
Suggests: rmarkdown, tstests, knitr, testthat (≥ 3.0.0)
Published: 2025-07-12
DOI: 10.32614/CRAN.package.tsissm
Author: Alexios Galanos ORCID iD [aut, cre]
Maintainer: Alexios Galanos <alexios at 4dscape.com>
License: GPL-2
URL: https://github.com/tsmodels/tsissm,https://www.nopredict.com/packages/tsissm
NeedsCompilation: yes
Materials: NEWS
In views: TimeSeries
CRAN checks: tsissm results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=tsissmto link to this page.