Векторная величина | это... Что такое Векторная величина? (original) (raw)
Векторная величина — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря - тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», т.е. в обычном трехмерном пространстве в классической физике или в четырехмерном[1] пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).
Употребление словосочетания "векторная величина" практически исчерпывается этим. Что же касается употребления термина "вектор", то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.
Содержание
- 1 Употребление терминов вектор и векторная величина в физике
- 2 Генезис векторных величин
- 3 Виды векторов применительно к физике
- 4 Примечания
Употребление терминов вектор и векторная величина в физике
В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).
В математике, произнося «вектор» понимают скорее вектор вообще, т.е. любой вектор любого сколь угодно абстрактного линейного пространства любой размерности и природы, что, если не прилагать специальных усилий, может приводить даже к путанице (не столько, конечно, по существу, сколько по удобству словоупотребления). Если же необходимо конкретизировать, в математическом стиле приходится или говорить довольно длинно ("вектор такого-то и такого-то пространства"), или иметь в виду подразумеваемое явно описанным контекстом.
В физике же практически всегда речь идет не о математических объектах (обладающих теми или иными формальными свойствами) вообще, а об определенной их конкретной ("физической") привязке. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической. Однако она не входит с последней в явное противоречие. Этого удается достичь несколькими простыми "приемами". Прежде всего, к ним относится соглашение об употребление термина по умолчанию (когда контекст особо не оговаривается). Так, в физике, в отличие от математики, под словом вектор без дополнительных уточнений обычно понимается не "какой-то вектор любого линейного пространства вообще", а прежде всего вектор, связанный с "обычным физическим пространством" (трехмерным пространством классической физики или четырехмерным пространством-временем[2] физики релятивистской). Для векторов же пространств, не связанных прямо и непосредственно с "физическим пространством" или "пространством-временем", как раз применяют специальные названия (иногда включающие слово "вектор", но с уточнением). Если вектор некоторого пространства, не связанного прямо и непосредственно с "физическим пространством" или "пространством-временем" (и которое трудно сразу как-то определенно охарактеризовать), вводится в теории, он часто специально описывается как "абстрактный вектор".
Всё сказанное еще в большей степени, чем к термину "вектор", относится к термину "векторная величина". Умолчание в этом случае еще жестче подразумевает привязку к "обычному пространству" или пространству-времени, а употребление по отношению к элементам абстрактных векторных пространств скорее практически не встречается, по крайней мере, такое применение видится редчайшим исключением (если вообще не оговоркой).
В физике векторами чаще всего, а векторными величинами - практически всегда - называют векторы двух сходных между собою классов:
- в классической физике (классической механике, электродинамике в классической трехмерной формулировке и в других областях физики, преимущественно сформировавшихся до начала ХХ века) векторными величинами или просто векторами называют, как правило, векторы обычного трехмерного пространства - т.е. обычные "геометрические" векторы или, быть может, отличающиеся от таковых на скалярный множитель (в том числе и на множитель размерный). Хотя в этих областях физики фактически и применялись разнообразные объекты, осознаваемые нынешней математикой как векторы - в физической терминологии это почти не получило отражения (так например, преобразование Фурье в классической электродинамике и классической теории сплошных сред весьма интенсивно применяется, но традиционно почти не рассматривается в контексте классической с использованием слова "вектор" применительно к функциям, хотя с математической точки зрения это было бы вполне законно[3]). Пожалуй, единственным явным исключением из правила является достаточно свободное векторами элементов фазового или конфигурационного пространств[4].
- в релятивистской физике[5] (начиная с Пуанкаре, Планка и Минковского) и, в значительной степени, в современной теоретической физике под векторами и векторными величинами понимаются прежде всего векторы четырехмерного пространства-времени[6] и непосредственно с ним связанные (отличающиеся на скалярный множитель от векторов 4-перемещения) - 4-векторы.
- в квантовой механике, квантовой теории поля итд слово "вектор" стало стандартно применяться и для обозначения такого объекта, как вектор состояния. Этот вектор может иметь в принципе любую размерность, а как правило - бесконечномерен. Однако путаницы тут практически не возникает, поскольку слово вектор тут используется практически исключительно в устойчивом сочетании вектор состояния, и никогда отдельно, за исключением разве что случаев, когда контекст уже настолько очевиден, что путаница просто невозможна (например, при повторном употреблении отдельного слова вектор в отношении объекта, который только что перед этим был назван, как вектор состояния или при использовании однозначных специфических обозначений - таких например, как скобки Дирака, - или соответствующих им терминов. Для ряда векторов специфических пространств используются специальные слова (такие, как например спиноры) или явные названия (вектор цветового пространства, изотопический спин итд). Притом что словосочетание "векторная величина" практически никогда не применяется к таким абстрактным векторам. Всё это позволило термину "векторный" сохранить в качестве, пожалуй, основного смысла - смысл 4-вектора. Именно этот смысл вкладывается в термины векторное поле, векторная частица (векторный бозон, векторный мезон); сопряженный смысл в подобных терминах имеет и слово скалярный.
Примеры векторных физических величин: скорость, сила, поток тепла.
Генезис векторных величин
Каким образом физические "векторные величины" привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснен выше) совпадает с размерностью одного и того же "физического" (и "геометрического") пространатсва, например, пространство трехмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяженностью, тем не менее имеет вполне определенное направление именно в этом обычном пространстве.
Однако оказывается, что можно достичь и гораздо большего, прямо "сведя" весь набор векторных величин физики к простейшим "геометрическим" векторам, вернее даже - к одному вектору - вектору элементарного перемещения, а более правильно было бы сказать - произведя их всех от него.
Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трехмерного случая классической физики и для четырехмерной пространственно-временной формулировки, обычной для современной физики.
Классический трехмерный случай
Будем исходить из обычного трехмерного "геометрического" пространства, в котором мы живем и можем перемещаться.
В качестве исходного и образцового вектора возьмем вектор бесконечно малого перемещения. Довольно очевидно, что это обычный "геометрический" вектор (как и вектор конечного перемещения).
Заметим теперь сразу, что умножение вектора на скаляр всегда дает новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами[7], поэтому заметим, что и векторное произведение двух векторов дает новый вектор.
Также новый вектор дает дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объему).
Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения dr, мы легко понимаем, что векторами являются (поскольку время - скаляр) такие кинематические величины, как
Из скорости и ускорения, умножением на скаляр (массу), появляются
Поскольку нас сейчас интересуют и псевдовекторы, заметим, что
- угловая скорость,
- момент импульса - появляются совершенно понятным образом.[8]
- с помощью формулы силы Лоренца напряженность электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.
Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, т.к. выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).
Современный четырехмерный случай
Ту же процедуру можно проделать исходя из четырехмерного перемещения. Оказывается, что все 4-векторные величины "происходят" от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение.
Виды векторов применительно к физике
- Полярный или истинный вектор - обычный вектор.
- Аксиальный вектор (псевдовектор) — на самом деле не является настоящим вектором, однако формально почти не отличается от последнего, за исключением того, что меняет направление на противоположное при изменении ориентации системы координат (например, при зеркальном отражении системы координат). Примеры псевдовекторов: все величины, определяемые через векторное произведение двух полярных векторов.
- Для сил выделяется несколько различных классов эквивалентности.
Примечания
- ↑ Во многих современных теориях размерность фундаментального пространства-времени больше, чем 4; впрочем, это в принципе довольно мало что меняет, к тому же ни одна из этих теорий пока не достигла статуса общепризнанной и достаточно подтвержденной.
- ↑ Во многих современных теориях, например, в теории струн, пространство-время не 4-мерно, а имеет большее количество измерений, однако является чаще всего достаточно прямым и простым обобщением своего 4-мерного прототипа, а возможность путаницы практически исключена контекстом самих этих теорий (не говоря уже о том, что размерность тогда часто указывается явно, а других, кроме размерности, отличий от обычного пространства-времени не предполагается).
- ↑ Для того, чтобы избежать противоречий между физической и математической терминологией, существует такой способ: вместо выражения "вектор такого-то пространства" применять синонимичное выражение "элемент такого-то пространства", математически полностью эквивалентное, но не создающее путаницы при употреблении наряду с обычных для физики терминологических традиций.
- ↑ трудно сказать, что послужило этому в большей степени: то, что эти пространства (особенно конфигурационное) выглядят слишком прямым обобщением обычного физического пространства, в частных случаях просто с последним совпадающим, или то, что теоретическая механика, в которой эти понятия возникли, считается разделом не физики, а математики.
- ↑ Под релятивистской физикой тут прежде всего понимается стандартная 4-мерная формулировка релятивистской механики, электродинамики и других теорий. В принуипе, такая формулировка используется и для квантовых теорий, и для не-квантовых.
- ↑ Наиболее явным выходом за эти рамки по умолчанию (т.е. без специальных терминологических уточняющих маркеров) являются уже упоминавшиеся теории, основанные на предположении о большей, чем 4, размерности фундаментального физического пространства-времени, начиная с теории Калуцы, до теории струн итд.
- ↑ При нужде такое разделение легко произвести, но нас сейчас интересует в первую построение наиболее полного набора векторных физических величин, а не их классификация, на этом мы и сосредоточимся.
- ↑ Для угловой скорости, правда, проще всего применить обратное рассуждение: поскольку векторное произведение угловой скорости и радиус-вектора есть скорость, значит угловая скорость - вектор (точнее - псевдовектор).