Биполярный транзистор | это... Что такое Биполярный транзистор? (original) (raw)
Обозначение биполярных транзисторов на схемах
Простейшая наглядная схема устройства транзистора
Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.
Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.
Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.
Содержание
- 1 Устройство и принцип действия
- 2 Режимы работы биполярного транзистора
- 3 Схемы включения
- 4 Основные параметры
- 5 Технология изготовления транзисторов
- 6 Применение транзисторов
- 7 См. также
- 8 Литература
- 9 Примечания
Устройство и принцип действия
Упрощенная схема поперечного разреза биполярного NPN транзистора
Первые транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. Последние транзисторы используются в схемах высокочастотных усилителей. Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база (это делается по двум причинам - большая площадь перехода коллектор-база увеличивает вероятность экстракции неосновных носителей заряда в коллектор и т.к. в рабочем режиме переход коллектор-база обычно включен с обратным смещением, что увеличивает тепловыделение, способствует отводу тепла от коллектора ), поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор).
В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора[1]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны, и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.
Режимы работы биполярного транзистора
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт)
UЭБ>0;UКБ<0 (для транзистора p-n-p типа, для транзистора n-p-n типа условие будет иметь вид UЭБ<0;UКБ>0);
Инверсный активный режим
Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).
Режим отсечки
В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты). Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Схемы включения
Любая схема включения транзистора характеризуется двумя основными показателями:
- Коэффициент усиления по току Iвых/Iвх.
- Входное сопротивление Rвх=Uвх/Iвх
Схема включения с общей базой
Усилитель с общей базой.
- Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.
- Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α<1]
- Входное сопротивление Rвх=Uвх/Iвх=Uбэ/Iэ.
Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.
Достоинства:
- Хорошие температурные и частотные свойства.
- Высокое допустимое напряжение
Недостатки схемы с общей базой :
- Малое усиление по току, так как α < 1
- Малое входное сопротивление
- Два разных источника напряжения для питания.
Схема включения с общим эмиттером
- Коэффициент усиления по току: Iвых/Iвх=Iк/Iб=Iк/(Iэ-Iк) = α/(1-α) = β [β>>1]
- Входное сопротивление: Rвх=Uвх/Iвх=Uбэ/Iб
Достоинства:
- Большой коэффициент усиления по току
- Большой коэффициент усиления по напряжению
- Наибольшее усиление мощности
- Можно обойтись одним источником питания
- Выходное переменное напряжение инвертируется относительно входного.
Недостатки:
- Худшие температурные и частотные свойства по сравнению со схемой с общей базой
Схема с общим коллектором
- Коэффициент усиления по току: Iвых/Iвх=Iэ/Iб=Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1]
- Входное сопротивление: Rвх=Uвх/Iвх=(Uбэ+Uкэ)/Iб
Достоинства:
- Большое входное сопротивление
- Малое выходное сопротивление
Недостатки:
- Коэффициент усиления по напряжению меньше 1.
Схему с таким включением называют «эмиттерным повторителем»
Основные параметры
- Коэффициент передачи по току
- Входное сопротивление
- Выходная проводимость
- Обратный ток коллектор-эмиттер
- Время включения
- Предельная частота коэффициента передачи тока базы
- Обратный ток коллектора
- Максимально допустимый ток
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, не зависимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
Эквивалентная схема биполярного транзистора с использованием h-параметров
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
h11 = Um1/Im1 при Um2 = 0.
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
h12 = Um1/Um2 при Im1 = 0.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
h21 = Im2/Im1 при Um2 = 0.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
h22 = Im2/Um2 при Im1 = 0.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Для схемы ОЭ: Im1 = Imб, Im2 = Imк, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:
h21э = Imк/Imб = β.
Для схемы ОБ: Im1 = Imэ, Im2 = Imк, Um1 = Umэ-б, Um2 = Umк-б.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:
С повышением частоты вредное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Сопротивление ёмкости уменьшается, снижается ток через сопротивление нагрузки и, следовательно, коэффициенты усиления α и β. Сопротивление ёмкости эмиттерного перехода Cэ также снижается, однако она шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционность процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме импульс тока коллектора начинается с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Технология изготовления транзисторов
- Эпитаксиально-планарная
- Сплавная
- Диффузионный
- Диффузионносплавной
Применение транзисторов
- Усилители, каскады усиления
- Генератор
- Модулятор
- Демодулятор (Детектор)
- Инвертор (лог. элемент)
- Микросхемы на транзисторной логике (см. транзисторно-транзисторная логика, диодно-транзисторная логика, резисторно-транзисторная логика)
См. также
Литература
- Электронные твердотельные приборы (online курс)
- Справочник о транзисторах
- Принцип работы биполярных транзисторов
Примечания
- ↑ Б. Ф. Лаврентьев Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53-68. — 336 с. — ISBN 978-5-7695-5898-6
![]() |
||
---|---|---|
Биполярные транзисторы | с общим эмиттером • с общим коллектором • с общей базой | ![]() ![]() |
Полевые транзисторы | с общим стоком • с общим истоком • с общим затвором | |
Транзисторные каскады | Пара Дарлингтона («составной» транзистор) • Пара Шиклаи • Каскадный усилитель • Дифференциальный усилитель • Каскодный усилитель |