Звёздчатый многоугольник | это... Что такое Звёздчатый многоугольник? (original) (raw)

Звёздчатый многоугольникмногоугольник, вершины которого расположены как у некоторого правильного многоугольника и стороны которого пересекаются между собой. Существует множество правильных звёздчатых многоугольников (или просто звёзд), среди них пентаграмма, две септаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая стороны правильного многоугольника после их пересечения в его вершинах до их следующего другого попарного пересечения в точках, которые и являются вершинами звёздчатого многоугольника. Полученый звёздчатый многоугольник будет звёздчатой формой правильного многоугольника, из которого он получен. Вершинами звёздчатого многоугольника будут считаться только точки, в которых сходятся стороны этого многоугольника, но не точки пересечения этих сторон; звёздчатая форма данного многоугольника имеет столько же вершин, сколько он сам. Указаную операцию невозможно проделать с правильным треугольником и квадратом, так как после продления их стороны более не пересекаются; звёздчатые формы имеют только правильные многоугольники начиная с пятиугольника. Звёздчатой формой пятиугольника (пентагона) является пентаграмма.

Звёзды могут быть нераспадающимися едиными многоугольниками, не являясь соединениями других правильных или звёздчатых многоугольников (как в случае с пентаграммой), а могут являться таковыми соединениями, примером чему служит звёздчатая форма шестиугольника — гексаграмма, или «Звезда давида», являющаяся соединением двух треугольников.

У правильного многоугольника может быть несколько звёздчатых форм, количество которых зависит от того, сколько раз его стороны пересекаются между собой после их продления, примером чего является семиугольник, имеющий 2 звёзчатые формы (два вида семиконечной звезды).

Количество вершин правильного многоугольника Количество звёздчатых форм правильного многоугольника Количество нераспадающихся (связных) звёздных многоугольников среди звёздчатых форм Количество вершин правильного многоугольника, расположенных между двумя вершинами звёздного многоугольника
5 1 1 1
7 2 2 2; 3
8 2 1 2
9 3 2 1; 3
10 3 1 2
11 4 4 1; 2; 3; 4
12 4 1 4

Двумерное дискретное множество звёзд.
Пурпурные — выпуклые многоугольники.
Зелёные — связные звёзды {n/m} (где n и m взаимно простые числа).
Чёрные — не связные звёзды {n/m} (где n и m не взаимно простые числа).
Синие прямые соединяют многоугольник (выпуклый или связную звезду) со всеми не связными звёздами, являющимися соединениями (после поворота) разного количества одинаковых многоугольников, таких же как этот

См. также

Ссылки