Уравнение Лондонов | это... Что такое Уравнение Лондонов? (original) (raw)
Уравнение Лондонов (в некоторых источниках — уравнение Лондона) устанавливает связь между током и магнитным полем в сверхпроводниках. Впервые оно было получено в 1935 г. братьями Фрицем и Хайнцем Лондонами (англ.)[1]. Уравнение Лондонов дало первое удовлетворительное объяснение эффекта Мейсснера — спадания магнитного поля в сверхпроводниках.
Содержание
Уравнение Лондона
В полной мере смысл механизма упорядочения в сверхпроводимости был впервые осознан физиком-теоретиком Фрицем Лондоном[2]. Осознав, что электродинамическое описание, основанное исключительно на уравнениях Максвелла, в пределе нулевого сопротивления неизбежно будет предсказывать необратимое поведение идеального проводника и не будет давать обратимый диамагнетизм сверхпроводника, Лондон ввел дополнительное уравнение. Вид этого уравнения можно получить различными способами, например путем минимизации свободной энергии относительно распределения тока и поля[3] или в предположении абсолютной жесткости сверхпроводящих волновых функций по отношению к воздействию внешнего поля; для наших целей, однако, достаточно считать его интуитивной гипотезой, полностью оправдываемой своим успехом.
Уравнение, предложенное Лондоном, имеет вид
где — плотность тока, — магнитная индукция, , m и q — масса и заряд сверхпроводящих носителей тока, n — плотность этих носителей.
Лондоновская глубина проникновения
При помощи уравнения Максвелла можно записать уравнение Лондона в виде
или
.
Решение этого уравнения в сверхпроводящей области с линейными размерами, намного большими , есть , где — индукция на глубине под поверхностью. Параметр имеет размерность длины и называется лондоновской глубиной проникновения магнитного поля. То есть магнитное поле проникает в сверхпроводник лишь на глубину . Для металлов мкм.
Природа сверхпроводимости
Уравнение Лондона дает нам ключ к пониманию природы сверхпроводящего упорядочения. Вводя векторный потенциал , где , используя калибровку и рассматривая односвязный сверхпроводник, мы приходим к уравнению Лондона в форме
В присутствии векторного потенциала обобщенный импульс заряженной частицы дается выражением .
Средний импульс на одну частицу можно записать в виде
Следовательно, сверхпроводящий порядок обусловлен конденсацией носителей тока в состоянии с наименьшим возможным импульсом . При этом из принципа неопределенности вытекает, что соответствующий пространственный масштаб упорядоченности бесконечен, то есть мы получаем бесконечную «когерентность» и невозможность воздействовать на систему электронов локализованными в пространстве полями.
Примечания
- ↑ London, F.; H. London (March 1935). «The Electromagnetic Equations of the Supraconductor». Proc. Roy. Soc. (London) A149 (866): 71.
- ↑ F. London, Superfluids, Vol. 1. Wiley, New York, 1950.
- ↑ P. G. de Gennes, Superconductivity of Metals and Alloys. Benjamin, New York,. 1966 (см. перевод: М., «Мир», 1968).