Теорема Фалеса | это... Что такое Теорема Фалеса? (original) (raw)

Thales-sov.jpg

Эта теорема о параллельных прямых. Об угле, опирающемся на диаметр, см. другую теорему.

Теорема Фалеса — одна из теорем планиметрии.

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.

В теореме нет ограничений на взаимное расположение секущих (она верна как для пересекающихся прямых, так и для параллельных). Также неважно, где находятся отрезки на секущих.

Доказательство в случае секущих

Доказательство в случае параллельных прямых

Проведем прямую BC. Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC, а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC. Тогда по первому признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD.

Также существует обобщённая теорема Фалеса:

Параллельные прямые отсекают на секущих пропорциональные отрезки:


\frac{A_1A_2}{B_1B_2}=\frac{A_2A_3}{B_2B_3}=\frac{A_1A_3}{B_1B_3}.

Теорема Фалеса является частным случаем обобщённой теоремы Фалеса, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Содержание

Обратная теорема

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

Если прямые, пересекающие стороны угла, отсекают на одной и на другой стороне угла равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны.

В обратной теореме Фалеса важно, что равные отрезки начинаются от вершины

Таким образом (см. рис.) из того, что \frac{CB_1}{CA_1}=\frac{B_1B_2}{A_1A_2}=\ldots = {\rm idem} следует, что прямые A_1B_1||A_2B_2||\ldots.

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример — трапеция, пересекаемая линией, проходящей через середины оснований).

Вариации и обобщения

Следующее утверждение, двойственно к лемме Соллертинского:

В случае теоремы Фалеса коникой будет бесконечно удалённая точка, соответствующая направлению параллельных прямых.

Это утверждение, в свою очередь, является предельным случаем следующего утверждения:

Пусть f — проективное преобразование коники. Тогда огибающей множества прямых Xf(X) будет коника (возможно, вырожденная).

Теорема Фалеса в культуре

Аргентинская музыкальная группа Les Luthiers (исп.) представила песню, посвящённую теореме. В видеоклипе для этой песни[1] приводится доказательство для прямой теоремы для пропорциональных отрезков.

Интересные факты

Литература

Примечания

  1. El Teorema de Thales por Les Luthiers en You Tube