Деформационный ретракт | это... Что такое Деформационный ретракт? (original) (raw)
Википедия
Деформационный ретракт
Деформационный ретракт
Категория:
- Теория гомотопий
Wikimedia Foundation.2010.
Смотреть что такое "Деформационный ретракт" в других словарях:
ДЕФОРМАЦИОННЫЙ РЕТРАКТ — топологического пространства X подмножество обладающее тем свойством, что существует гомотопия тождественного отображения пространства Xв нек рое отображение при к рой все тояки множества Аостаются неподвижными. Если при гомотопии точки из… … Математическая энциклопедия
РЕТРАКТ — т о п о л о г и ч е с к о г о п р о с т р а нс т в а X подпространство Аэтого пространства, для к рого существует ретракция X на А. Если пространство X хаусдорфово, то всякий Р. пространства Xзамкнут в X. Всякое непустое замкнутое множество… … Математическая энциклопедия
Фундаментальная группа — Фундаментальная группа определённая группа, которая сопоставляется топологическому пространству. Грубо говоря, эта группа измеряет количество «дырок» в пространстве. Наличие «дырки» определяется невозможностью непрерывно продеформировать… … Википедия
ГОМОТОПИЧЕСКИЙ ТИП — класс гомотопически эквивалентных топологич. пространств. Отображения и наз. взаимно обратными гомотопическими эквивалентностями, если и Если выполнено только первое из этих соотношений, то gназ. гомотопически мономорфным отображением, а f… … Математическая энциклопедия
Словарь терминов общей топологии — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч … Википедия
Дискетная топология — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Замкнутое подмножество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Компонента связности — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Континуум (топология) — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Пометить текст и поделиться
Искать во всех словарях
Искать в переводах
Искать в Интернете