Симметрия (биология) | это... Что такое Симметрия (биология)? (original) (raw)
Симметрия (др.-греч. συμμετριαι — «соразмерность») в биологии — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.
Асимметрия — (греч. α- — «без» и «симметрия») — отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии — вторичной утрате симметрии или отдельных её элементов.
Понятия симметрии и асимметрии альтернативны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, радиальную или билатеральную. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у амёбы) от отсутствия симметрии. В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листья растений при сложении пополам в точности не совпадают.
Содержание
- 1 Элементы симметрии
- 2 Типы симметрий
- 3 Эволюция симметрии
- 4 См. также
- 5 Примечания
- 6 Ссылки
- 7 Литература и источники
Элементы симметрии
Среди элементов симметрии различают следующие:
- плоскость симметрии — плоскость, делящая объект на две равные (зеркально симметричные) половины;
- ось симметрии — прямая линия, при повороте вокруг которой на некоторых угол, меньший 360о, объект совпадает сам с собой;
- центр симметрии — точка. делящая пополам все прямые линии, соединяющие подобные точки объекта.
Обычно через центр симметрии проходят оси симметрии, а через ось симметрии — плоскости симметрии. однако существуют тела и фигуры, у которых при наличии центра симметрии нет ни осей, ни плоскостей симметрии, а при наличии оси симметрии отсутствуют плоскости симметрии (см. ниже).
Кроме этих геометрических элементов симметрии, различают биологические:
- антимеры — симметрично повторяющиеся вокруг главной оси монаксонно гетерополярных (см. ниже) форм участки тела[1];
- радиус — плоскость симметрия антимера;
- интеррадиус — плоскость, проходящая между соседними антимерами;
- метамеры — повторяющиеся участки, расположенные вдоль продольной (обычно передне-задней) оси тела организма.
Типы симметрий
У биологических объектов встречаются следующие типы симметрии:
- сферическая симметрия — симметричность относительно вращений в трёхмерном пространстве на произвольные углы.
- аксиальная симметрия (радиальная симметрия, симметрия вращения неопределённого порядка) — симметричность относительно поворотов на произвольный угол вокруг какой-либо оси.
- симметрия вращения n-го порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси.
- двусторонняя (билатеральная) симметрия — симметричность относительно плоскости симметрии (симметрия зеркального отражения).
- трансляционная симметрия — симметричность относительно сдвигов пространства в каком-либо направлении на некоторое расстояние (её частный случай у животных — метамерия (биология)).
- триаксиальная асимметрия — отсутствие симметрии по всем трём пространственным осям.
Классификация типов симметрии цветков растений
Типы симметрии цветков растений[2]
Тип симметрии | Плоскости симметрии | Синонимы | Примеры |
---|---|---|---|
Древняя асимметрия или гапломорфия | Нет | Актиноморфия, радиальная, регулярная | Магнолия (Magnoliaceae), Нимфея (Nymphaceae) |
Актиноморфия или радиальная симметрия | Обычно больше двух (полисимметричные) | Регулярная, плеоморфия, стереоморфия, мультисимметрия | Примула (Primulaceae), Нарцисс (Amaryllidaceae), Pyrola (Ericaceae) |
Дисимметрия | Две (дисимметричные) | Билатеральная симметрия | Dicentra (Fumariaceae) |
Зигоморфия | Одна (моносимметричные) | Билатеральная, нерегулярная, медиальная зигоморфия | |
медиальная зигоморфия или билатеральная симметрия | Salvia (Lamiaceae), Орхидея (Orchidaceae), Scrophularia (Scrophulariaceae) | ||
трансверс (верх-низ) зигоморфия | Fumaria и Corydalis (Fumariaceae) | ||
диагональная зигоморфия | облигатная зигоморфия | Aesculus (Hippocastanaceae) находят у Malpighiaceae, Sapindaceae | |
Приобретённая асимметрия | Нет | Нерегулярная, асимметрия | |
новая асимметрия | Нерегулярная, асимметрия | Centranthus (Valerianaceae), находят у Cannaceae, Fabaceae, Marantaceae, Zingiberaceae | |
энантиоморфия моно-энантиоморфия ди-энантиоморфия | Энантиостилия, неравнолатеральная | Cassia (Caeasalpinaceae), Cyanella (Tecophilaeceae), Monochoria (Pontederiaceae), Solanum (Solanaceae), Barberetta и Wachendorffia (Haemodoraceae) |
Сферическая симметрия
Радиальная симметрия
Билатеральная симметрия
Эволюция симметрии
Признаки симметрии определяются внешней средой. Полностью изотропной экологической нише соответствует максимальная степень симметрии организмов. Первые организмы на Земле, плавающие в толще воды одноклеточные, возможно, имели максимально возможную симметрию — шаровую, они появились примерно 3.5 млрд лет назад.
Эволюция симметрии у животных и протистов
Асимметризация у животных по оси «верх-низ» происходила под действием поля гравитации. Это привело к появлению брюшной (нижней) и спинной (верхней) стороны у подавляющего большинства подвижных животных (как с радиальной, так и билатеральной симметрией). У некоторых радиальносимметричных сидячих животных нет спинной и брюшной стороны, нижней стороне тела обычно соответствует аборальный полюс, верхней — оральный (ротовой).
Асимметризация по передне-задней оси происходила при взаимодействии с пространственным полем, когда понадобилось быстрое движение (спастись от хищника, догнать жертву). В результате в передней части тела оказались главные рецепторы и мозг.
Билатерально симметричные многоклеточные животные господствуют последние 600—535 млн лет. Они стали окончательно преобладающими в фауне Земли после «кембрийского взрыва»; до этого, среди представителей вендской фауны, преобладали радиальносимметричные формы и своеобразные животные, обладавшие «симметрией скользящего отражения».
Среди современных животных первично радиальной симметрией, по-видимому, обладают только губки и гребневики; хотя стрекающие и относятся к радиальносимметричным животным, симметрия у коралловых полипов обычно билатеральная. По современным молекулярным данным, симметрия у стрекающих, вероятно, исходно была билатеральной, а радиальная симметрия, свойственная медузозоям, вторична.
В. Н. Беклемишев в своем классическом труде[3] дал подробный анализ элементов симметрии и подробную классификацию типов симметрии протистов. Среди форм тела, свойственной этим организмам, он различал следующие:
- анаксонная — например, у амеб (полная асимметрия)
- сферическая (шаровая симметрия, имеется центр симметрии, в котором пересекается бесконечное число осей симметрии бесконечно большого прядка) — например, у многих спор или цист
- неопределенно полиаксонная (есть центр симметрии и конечное, но неопределённое число осей и плоскостей) — многие солнечники
- правильная полиаксонная (строго определенное число осей симметрии определённого порядка) — многие радиолярии;
- ставраксонная (монаксонная) гомополярная (есть одна ось симметрии с равноценными полюсами, то есть пересекаемая в центре плоскостью симметрии, в которой лежат не менее двух дополнительных осей симметрии) — некоторые радиолярии;
- монаксонная гетерополярная (есть одна ось симметрии с двумя неравноценными полюсами, центр симметрии исчезает) — многие радиолярии и жгутиковые, раковинные корненожки, грегарины, примитивные инфузории;
- билатеральная — дипломонады, бодониды, фораминиферы.
Эти формы симметрии перечислены в том порядке, в котором Беклемишев выстроил их в морфологический ряд. Считая полностью асимметричную амёбу более примитивным существом, чем одноклеточные организмы с шаровой симметрией (радиолярии, вольвоксовые), он поместил её в начало ряда. Билатерально симметричные организмы конечным звеном этого морфологического ряда, который конечно. не является эволюционным (Беклемишев подчёркивает. что билатеральная симметрия может возникать независимо самыми разными путями).
Другой морфологический ряд, рассмотренный в той же работе — ряд форм с вращательной симметрией (это такой тип симметрии, при которой имеется только ось симметрии и отсутствуют плоскости симметрии).
Анализируя связь симметрии со средой обитания, Беклемишев связывает полиаксонную форму тела с однородностью среды, монаксонно гетерополярную — с прикреплением к субстрату, вращательную (винтовую) — со способом передвижения многих протистов («ввинчивание» в воду). Билатеральная симметрия многоклеточных животных, по Беклемишеву, возникла в связи с ползанием по дну.
См. также
Примечания
- ↑ Антимеры // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Neal P. R., Dafni A., Giurfa M. (1998) Floral Symmetry And Its Role In Plant-Pollinator Systems: Terminology, Distribution, and Hypotheses. Annu. Rev. Ecol. Syst. 29 p. 345-73.
- ↑ Беклемишев В. Н. Основы сравнительной анатомии беспозвоночных. М., Наука, 1964 1 432 с.
Ссылки
- Fact Monster (англ.)
- Ker Than. Symmetry in Nature: Fundamental Fact or Human Bias? / Live Science.com (англ.)
- Evolutionary Theories of Asymmetrization of Organisms, Brain and Body (англ.)
- Zoology a website by the Monaco educational service (англ.)
- Симметрия (биология) — статья из Большой советской энциклопедии
Литература и источники
- Шафрановский И.И. Симметрия в природе. Ленинград, "Недра", 1985. - 168 с.
- Заренков Н. А. Биосимметрика. М.: Книжный дом «ЛИБРОКОМ», 2009. - 320 с.
- Heads, Michael. «Principia Botanica: Croizat’s Contribution to Botany.» Tuatara 27.1 (1984): 26-48. (англ.)
- Willmer, P. G. (1990). Invertebrate Relationships : Patterns in Animal Evolution. Cambridge University Press, Cambridge. (англ.)