Дифференцирование сложной функции | это... Что такое Дифференцирование сложной функции? (original) (raw)
Цепное правило (правило дифференцирования сложной функции) позволяет вычислить производную композиции двух и более функций на основе индивидуальных производных. Если функция f имеет производную в точке , а функция g имеет производную в точке , то сложная функция h(x) = g(f(x)) также имеет производную в точке .
Содержание
Одномерный случай
Пусть даны функции, определённые в окрестностях на числовой прямой, где и Пусть также эти функции дифференцируемы: Тогда их композиция также дифференцируема: и её производная имеет вид:
Замечание
В обозначениях Лейбница цепное правило для вычисления производной функции где принимает следующий вид:
Инвариантность формы первого дифференциала
Дифференциал функции в точке имеет вид:
где — дифференциал тождественного отображения :
Пусть теперь Тогда , и согласно цепному правилу:
Таким образом, форма первого дифференциала остаётся одной и той же вне зависимости от того, является ли переменная функцией или нет.
Пример
Пусть Тогда функция может быть записана в виде композиции где
Дифференцируя эти функции отдельно:
получаем
Многомерный случай
Пусть даны функции где и Пусть также эти функции дифференцируемы: и Тогда их композиция тоже дифференцируема, и её дифференциал имеет вид
В частности, матрица Якоби функции является произведением матриц Якоби функций и
Следствия
- Якобиан композиции двух функций является произведением якобианов индивидуальных функций:
Для частных производных сложной функции справедливо
Пример
Пусть дана функция трёх переменных и требуется найти её частную производную по переменной . Функция может быть записана как где
Тогда частная производная функции по переменной будет иметь следующий вид:
Вычисляем производные:
Подставляем найденные производные:
В итоге
См. также
Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. |
---|