Свёртка тензора | это... Что такое Свёртка тензора? (original) (raw)
У этого термина существуют и другие значения, см. Свёртка.
Свёртка в тензорном исчислении — операция понижения валентности тензора на 2, переводящая тензор валентности в тензор валентности
. В координатах она записывается следующим образом:
где применено правило суммирования Эйнштейна по повторяющимся разновариантным (верхнему и нижнему) индексам, т.е. в данном случае по .
Часто операцию свёртки проводят над тензорами, являющимися произведениями тензоров, или, короче, производят свёртку двух или нескольких тензоров.
Например, есть запись обыкновенного перемножения матрицы A на матрицу B, то есть, в обычной матричной записи, записывая индексы внизу и не опуская знак суммы, это
.
В принципе свёртка всегда проводится по верхнему и нижнему индексам, однако в случае если задан метрический тензор, ко- и контравариантные индексы можно однозначно переводить друг в друга (поднимать и опускать), поэтому свёртку можно вести по любой паре индексов, используя метрический тензор, если оба индекса верхние или нижние. Например:
Замечание: операция свёртки определена и имеет смысл не только для тензорных объектов. Во всяком случае, в компонентах совершенно та же операция применяется для свертки с матрицами преобразования координат (матрицами Якоби) и с компонентами аффинной связности, не являющимися представлениями тензоров. Эти свёртки имеют так же ясный геометрический смысл и играют важную роль в тензорном анализе, к тому же используются для построения представления настоящих тензорных объектов, таких как тензор кривизны.
Примеры
- Свёртка тензора по паре индексов, по которым он анти(косо)симметричен, даёт нулевой тензор.
- Свёртка
вектора v с тензором A ранга (1,1) представляет умножение вектора на линейный оператор, каковым такой тензор является по отношению к вектору.
- Свёртка
векторов a и b с тензором B ранга (0,2) является билинейной формой; так свёртка двух векторов с метрическим тензором
дает их скалярное произведение.
- В том числе
- квадратичная форма; именно таким образом свертка с метрическим тензором дает квадрат нормы вектора.
- Свёртка
ковариантного и контравариантного вектора дает действие 1-формы на вектор, или, если считать ковариантные компоненты просто дуальным представлением настоящего вектора, то это скалярное произведение двух векторов, один из которых представлен в дуальном базисе.
- Свёртка
тензора A ранга (1,1) (с собой) является следом матрицы
. Это простейший случай построения (скалярного) инварианта из тензора.
- Действие линейного оператора на пространстве тензоров некоторого определенного ранга есть свёртка с тензором вдвое большего ранга, столько же раз ковариантного, сколько контравариантного, например (в координатной записи):
Свойства
- Свёртка (корректная) одного или нескольких тензоров (в том числе векторов и скаляров) всегда дает тензор (в том числе, возможно, вектор или скаляр).
![]() |
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 29 июня 2012. |
---|