Свёртка тензора | это... Что такое Свёртка тензора? (original) (raw)

У этого термина существуют и другие значения, см. Свёртка.

Свёртка в тензорном исчислении — операция понижения валентности тензора на 2, переводящая тензор валентности (m, n) в тензор валентности (m-1, n-1). В координатах она записывается следующим образом:

{T^{i_1, \dots, \underline{i_0}, \dots, i_n}_{j_1, \dots, \underline{j_0}, \dots, j_n}} \rightarrow {T^{i_1, \dots, i_n}_{j_1, \dots, j_n}} = {T^{i_1, \dots, \underline{i_0}, \dots, i_n}_{j_1, \dots, \underline{i_0}, \dots, j_n}}

где применено правило суммирования Эйнштейна по повторяющимся разновариантным (верхнему и нижнему) индексам, т.е. в данном случае по i_0.

Часто операцию свёртки проводят над тензорами, являющимися произведениями тензоров, или, короче, производят свёртку двух или нескольких тензоров.

Например, A^i_j B^j_k есть запись обыкновенного перемножения матрицы A на матрицу B, то есть, в обычной матричной записи, записывая индексы внизу и не опуская знак суммы, это

 \sum_{j=1}^N A_{ij} B_{jk}.

В принципе свёртка всегда проводится по верхнему и нижнему индексам, однако в случае если задан метрический тензор, ко- и контравариантные индексы можно однозначно переводить друг в друга (поднимать и опускать), поэтому свёртку можно вести по любой паре индексов, используя метрический тензор, если оба индекса верхние или нижние. Например:

A_{ij} B_{jk} = A_{ij} g^{jm} B_{mk} = A_{ij} B^j_{\ k} = C_{ik}

Замечание: операция свёртки определена и имеет смысл не только для тензорных объектов. Во всяком случае, в компонентах совершенно та же операция применяется для свертки с матрицами преобразования координат (матрицами Якоби) и с компонентами аффинной связности, не являющимися представлениями тензоров. Эти свёртки имеют так же ясный геометрический смысл и играют важную роль в тензорном анализе, к тому же используются для построения представления настоящих тензорных объектов, таких как тензор кривизны.

Примеры

Свойства

Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 29 июня 2012.