Движение Рейдемейстера | это... Что такое Движение Рейдемейстера? (original) (raw)

В математической теории узлов, движением (преобразованием) Рейдемейстера называют одно из трёх локальных движений на диаграмме зацепления. В 1927 Джеймс Александер и Бриггс, а также независимо от них Курт Рейдемейстер, показали, что две диаграммы, относящиеся к одному и тому же узлу, с точностью до плоской изотопии могут быть преобразованы одна в другую с помощью последовательного применения одного из трёх движений Рейдемейстера.

Движения Рейдемейстера

Reidemeister move 1.png Reidemeister move 2.png
Тип I Тип II
Reidemeister move 3.png
Тип III

Каждое движение действует в небольшой области диаграммы и бывает одного из трёх типов:

Тип I. Скручивание и раскручивание в любом направлении.

Тип II. Перемещение одной петли целиком через другую.

Тип III. Перемещение нити целиком над или под пересечением.

Заметим, что другие части диаграммы не отображены на схеме движения, а также, что плоская изотопия может исказить рисунок. Нумерация типов движений соответствует числу нитей, вовлечённых в него, к примеру, движение типа II действует на двух нитях диаграммы.

Один из важных случаев, когда требуются движения Рейдемейстера — это определения инвариантов узлов. Инвариант определяют, как свойство диаграммы узла, которое не меняется при любых движениях Рейдемейстера. Множество важных инвариантов можно определить таким образом, включая полином Джонса.

Только движения типа I изменяют число закрученности зацепления. Движение типа III — единственное, которое не изменяет число пересечений на диаграмме.

В приложениях, таких как исчисление Кирби, в котором искомый класс эквивалентности диаграмм узла является не узлом, а оснащённым узлом, необходимо заменить движение типа I движением «модифицированного типа I» (тип I'), состоящем из двух движений типа I в противоположных направлениях. Движение типа I' не затрагивает ни оснащённость зацепления, ни полный индекс извивания диаграммы узла.

Модифицированное движение Рейдемейстера

Reidemeister move 1 prime.png
Тип I'

Брюс Трэйс показал, что две диаграммы связаны только движениями типов II и III тогда и только тогда, когда у них одинаковые числа закрученности и вращения(en:winding number). Кроме того, совместная работа О. Остлунд, В. О. Мантурова и Т.Хаге показывает, что для каждого узла есть такая пара диаграмм, что любая последовательность движений Рейдемейстера, переводящая одну диаграмму в другую, должна состоять из движений всех трёх типов. Александр Ковард показал, что для диаграмм зацеплений, представляющих эквивалентные зацепления, есть последовательность движений, упорядоченная по типам: сначала выполняются движения типа I, затем — типа II, типа III и снова типа II. Движения до движений типа III увеличивают число пересечений, а после них — уменьшают.

В другом русле, Стефан Галатоло, и независимо Джоэл Хас и Джеффри Лагарьяс (с лучшим ограничением), показали, что существует верхняя граница (зависящая от числа пересечений) количества движений Рейдемейстера необходимая, чтобы превратить диаграмму тривиального узла в его стандартную диаграмму. Это предоставляет малопродуктивный алгоритм для решения задачи развязывания.

Чюичиро Хаяши доказал, что есть также верхняя граница, зависящая от числа пересечений, движений Рейдемейстера, необходимых для расщепления зацепления

Литература