Кабель | это... Что такое Кабель? (original) (raw)

Ка́бель (вероятно через нем. Kаbеl или нидерл. kаbеl из фр. câble, от лат. сарulum — аркан) — конструкция из одного или нескольких изолированных друг от друга проводников (жил), или оптических волокон, заключённых в оболочку. Кроме собственно жил и изоляции может содержать экран, силовые элементы и другие конструктивные элементы.

Существуют также кабели, совмещающие в себе функции передачи и излучения радиосигналов (излучающий кабель), либо преобразования электрической энергии в тепло на большой протяжённости (греющий кабель).

В 1878 году инженер-технолог М. М. Подобедов организовал в России на Васильевском острове Санкт-Петербурга первые кустарные мастерские для выработки проводников с шёлковой и хлопчатобумажной изоляцией, на которых работало несколько человек. Там же им было создано небольшое предприятие «Русское производство изолированных проводников электричества Подобедовых, Лебурде и Ко», преобразованное в 1888 году в завод «Русское производство проводов электричества» М. М. Подобедова. 25 октября 1879 года одному из братьев Сименс[_Какому?_] (фирма «Сименс и Гальске») было выдано свидетельство на производство работ в построенном им заводе по изготовлению изолированной проволоки и телеграфных проводов в Васильевской части Санкт-Петербурга (впоследствии завод «Севкабель»).[1]

Содержание

Классификация кабелей

Телефонный кабель пучковой скрутки

Оптический кабель

На сегодняшний день[_когда?_] в России выпускается более 20 тыс. типоразмеров кабеля.

Группы однородной кабельной продукции включают кабели:

Также кабели разделяют по:

Стандарт ISO 11801 2002 детально описывает классификацию кабелей.

Токопроводящие жилы

Оконцовка медного многожильного провода в ПВХ-изоляции

Плоский кабель (шлейф), предназначен для подключения устройств ATA

Телефонный кабель повивной скрутки

Воздушная линия электропередачи переходит в кабельную

Токопроводящие жилы в кабелях изготавливаются из следующих материалов:

Токопроводящие жилы силовых кабелей нормируют по сечению.[3] Внутренний проводник радиочастотных и коаксиальных кабелей связи, жилы симметричных кабелей связи, жилы кабелей для сигнализации и блокировки нормируются по их диаметру.[3]

В случаях, когда кабели необходимо герметизировать (например, для судовых кабелей) промежутки между проволоками многопроволочных жил заполняют герметизирующим составом.[3]

Материал оболочки

Оболочка кабеля предназначена для защиты проводников и изоляторов от внешних воздействий, прежде всего от влаги, которая приводит к нарушению изоляции электрических кабелей, а также помутнению оптических волокон.

Оболочка кабеля может состоять из одного и более герметизирующих и армирующих слоёв, в качестве этих слоёв могут применяться различные материалы: ткань, пластмассы, металл, резина и проч. Кабели для передачи электрических сигналов могут быть снабжены экраном из металлической сетки, листового металла (фольги) или полимерной плёнки с тонким металлическим покрытием.

Поливинилхлоридные (ПВХ) пластикаты

Твёрдый поливинилхлорид имеет высокое содержание хлора (около 57 %) и воспламеняется с трудом. При воздействии пламени происходят следующие процессы:

Один килограмм твёрдого поливинилхлорида выделяет 350 литров газообразного хлороводорода, который при растворении может дать более 2 литров концентрированной (25 %) соляной кислоты.

Для изоляции кабелей применяется мягкий поливинилхлорид или кабельный пластикат. Этот материал содержит 50 % различных добавлений (пластификаторов и др.), которые сильно изменяют горючие свойства полимера. Пластификаторы начинают улетучиваться уже при температуре 200 °C и загораются. Содержание хлора уменьшается примерно до 35 %, и его не хватает, чтобы препятствовать распространению огня. Однако, при сильном выделении хлороводорода твёрдый поливинилхлорид, удалённый от очага, не загорается и пожар гаснет.

Благодаря перепаду температур, тяге, создаваемой в кабельных шахтах, газы, содержащие хлороводород уносятся от очага пожара, проникают в щитовые и аппаратные помещения и оседают на оборудовании.[4]

В начале 1980-х годов требования к пожарной безопасности кабелей сводились в основном к нераспространению горения по длине кабельных изделий, проложенных одиночно или в пучках. Для этого применяли оболочки кабельных изделий, изготовленных из пластикатов марок О-40, ГОСТ 5960-72 (кабели ВВГ, АВВГ);[5] при испытании пластиката образец длиной 130 мм, шириной 10 мм и толщиной 2 мм вносится в пламя газовой или спиртовой горелки с выдерживанием его в пламени под углом 45° до воспламенения, после этого образец достаётся из пламени и должен потухнуть за время не более 30 секунд.[6]) и НГП 30-32 (НГП 40-32) (ТУ 1328-86)[7]

Проводились экспериментальные исследования, моделирующие прокладку кабеля в пожароопасном помещении. Кабели АВВГ 3х25+1х16, прокладывались горизонтально на лотках и покрывались слоем опилок. При укладке в три ряда и 14 кабелей в ряду кабельная трасса выгорала полностью по всей длине. При этом были зафиксированы скорости: на нижнем ряду 0,00154 м/с, на среднем 0,00167 м/с, на верхнем 0,00170 м/с.[8]

ГОСТ 5960-72 «Пластикат поливинилхлоридный для изоляции и защитных оболочек проводов и кабелей» был разработан и введён в действие с 1 января 1974 года, имеет 9 изменений. С 1991 года работы по внесению технических изменений в ГОСТ 5960-72 были прекращены. Дальнейшие разработки и модификации существующих марок ПВХ пластикатов оформлялись в виде технических условий.[9] С 1 июля 2010 отменяется действие на территории РФ стандартов ГОСТ 6323-79 «Провода с поливинилхлоридной изоляцией для электрических установок. ТУ» и ГОСТ 16442-80 «Кабели силовые с пластмассовой изоляцией. ТУ» и вводятся в действие ГОСТ Р 53768-2010 «Провода и кабели для электрических установок на номинальное напряжение 450/750 В включительно. ОТУ» и ГОСТ Р 53769-2010 «Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. ОТУ».[10]

Пропитанная бумажная изоляция

Кабельная бумага по ГОСТ 23436-83 для изоляции силовых кабелей на напряжение до 35 кВ марок К и КМП изготавливается из небеленой сульфатной целлюлозы, марки КМ — из небелёной сульфатной целлюлозы для многослойной кабельной бумаги. Кабельная бумага по ГОСТ 645-79 для изоляции кабелей на напряжение от 110 до 500 кВ изготавливается из специальной сульфатной небелёной целлюлозы, бумага марок КВМ (многослойная) и КВМС (многослойная стабилизированная) выпускается машинной гладкости, а бумага марки КВМСУ (многослойная стабилизированная уплотнённая) — каландрированной.[11]

Полиэтиленовая изоляция

Коаксиальный фидер с полувоздушной изоляцией

Распространение пожара в Останкинской телебашне в направлении сверху вниз было обусловлено стекающим расплавом полиэтиленовой оболочки фидеров. В лабораторных условиях скорость распространения пламени составляла 0,25-0,50 м/мин; при пожаре на телебашне, из-за высокой объёмной температуры, скорость распространения выросла в 2-4 раза, при этом падающие вниз горевшие капли полиэтилена создавали вторичные очаги пожара.

Из-за высокой температуры в очаге пожара и высокой теплопроводности жил меди огнезащита антенных фидеров оказалась не эффективна. В качестве огнезащиты использовалась краска для полиэтиленовой оболочки фидеров и изоляция поверхности стекловолоконной тканью. Огнезащитная конструкция обвисала и опадала при интенсивном горении полиэтилена изнутри. Кроме активного горения фидеров, имевших горючие внешние полиэтиленовые оболочки, вклад внесло также горение других кабелей, которые не были защищены огнезащитными составами.[12]

Современные кабели производятся с изоляцией из сшитого полиэтилена и используются в сетях различного класса напряжения (до 500 кВ). Применение сшитого полиэтилена обеспечивает высокие диэлектрические свойства изоляции, высокие механические свойства, более высокие по сравнению с бумажно-масляной изоляцией термические режимы, надёжность и долговечность кабелей.

Маслонаполненный кабель

Маслонаполненный кабель — это кабель с избыточным давлением, создаваемым маслом, входящим в состав бумажной пропитанной изоляции, и предусмотренной компенсацией температурных изменений объёма масла.

Маслонаполненный кабель в трубопроводе — это маслонаполненный кабель с отдельно экранированными жилами, заключёнными в трубопровод, служащий оболочкой.[13]

Развитие пожаров в кабельных помещениях с кабелями в маслонаполненных трубах при равных условиях газообмена происходит более интенсивно, чем по кабелям воздушной прокладки. Вызвано это тем, что масло в трубах находится при температуре 35-40 °C под избыточным давлением и при разгерметизации трубы растекается, увеличивая площадь горения.[14]

В России выпускались кабели на напряжение 110—500 кВ с необходимой арматурой. С 2005 года сняты с производства и в настоящее время существующие линии заменяются высоковольтными кабелями с изоляцией из сшитого полиэтилена.

Другие типы изоляции

Также в качестве изоляции может применяться прессованная окись магния, изоляционные лаки, шёлк натуральный и синтетический, хлопчатобумажная пряжа, полистирольная и триацетатная лента.[15]

Пожарная безопасность кабелей

В условиях устойчивого дефицита кабельной продукции, который имел место в бывшем Советском Союзе, потребители не предъявляли к нему особых противопожарных требований. Многие кабели обладали «хорошей» горючестью, имея оболочки из обычного ПВХ-пластиката (АВВГ, ВВГ, КВВГ и т. п.) или даже из полиэтилена (ТПП).[16] Кабели ВВГ и НРГ при их количестве в пучке пять или более в большинстве случаев распространяют горение при вертикальном расположении.[17]

Низшая теплота сгорания изоляции кабелей распространяющих горение составляет от 16,9 до 19,2 МДж/кг, а для НГ и огнестойких от 22,5 до 25,2 и 32 МДж/кг, соответственно.[18]

Распространение горения по кабельным линиям и электропроводкам зависит от отношения теплоты сгорания к объёму пучка кабелей и/или проводов (объем включает в себя воздушные зазоры между кабелями и проводами).[8] Если выполняется неравенство Уmax > У > Уmin, то такая кабельная линия относится к линии, распространяющей горение, где У — удельная теплота сгорания кабельной линии.[19]

Тип кабеля в электропроводке или кабельной линиии Вид прокладки Количество рядов, слоев кабелей или рядов пучков кабелей, шт. Удельная теплота сгорания электропроводок или кабельных линиий, распространяющих горение, кДж/см³
Уmin Уmax
Не распространяющий горение при одиночной прокладке Вертикальная 1 3,56 16,8
2 и более 0,46 16,8
Горизонтальная 2 и более 0,7 8,4
Не распространяющий горение при групповой прокладке Вертикальная 2 и более 2 4,5
Горизонтальная 2 и более 2,5 4

Эксплуатация на электростанциях и других энерговооружённых предприятиях кабелей, которые удовлетворяют только требованиям по нераспространению горения для одиночного кабеля, была сопряжена со значительным числом пожаров, приводящих к большому ущербу. В 1984—1986 годах во ВНИИ кабельной промышленности были разработаны кабельные изделия массового применения, которые не распространяют горение при групповой прокладке. Первоначально такие кабели и провода применялись на атомных электростанциях, однако затем эти кабельные изделия были использованы и в других областях промышленности. В обозначения марок кабелей такого типа введён индекс «нг».[20] Согласно статистики, с 1990 по 2008 год на АЭС горения кабелей типа «нг» не происходило.[18]

В химическом составе оболочек кабелей в маркировкой «нг» присутствуют элементы галогенового ряда. Кабель имеет повышенную устойчивость к распространению горения и возгоранию от коротких замыканий. Однако горение его в условиях пожара, когда он сам подвергается воздействию пламени, может привести к повышению уровня токсичности продуктов горения. Поэтому их применение в метрополитенах Западной Европы было запрещено в конце 1970-х годов.[21]

Для решения проблем, связанных с выделением HCl и задымлением, был создан класс кабельных материалов, не содержащих галогены, то есть не выделяющих коррозионно-активных газов и имеющих существенно более низкий уровень выделения дыма — так называемых композиций. Безгалогенные кабельные композиции разрабатываются из необходимости увеличения их кислородного индекса до величин порядка 35…40. Это достигается за счет введения в исходный полимер антипиренов-гидроокисей. В промышленных масштабах используются гидроокиси алюминия Al(OH)3 и магния Mg(OH)2 синтетического и природного происхождения. Механизм антипиренного действия гидроокисей заключается в поглощении большого количества тепла за счет выделения воды при повышении температуры. Базовыми полимерами для промышленных безгалогенных композиций являются, в основном, сополимеры этилена: этиленвинилацетат (EVA), этилен-акрилатные полимеры (EMA, EEA, EBA), металлоценовые этилен-октен сополимеры (mULDPE) и этилен-пропиленовые сополимеры (EPR/EPDM).[22]

Современные требования пожарной безопасности

Запрещена открытая прокладка кабелей с оболочкой распространяющей горение.[23]

Испытания огнепреграждающих конструкций в кабельном канале

Кабельные изделия должны подразделяться по показателям пожарной безопасности на следующие типы исполнения:

В скобках указывают соответствующую категорию: A F/R, А, В, С или D.[24] Категории отличаются объёмом неметаллического материала на длине 1 м, который используется при испытании на нераспространение горения:

Условие нераспространения горения при открытой прокладке — это минимальное требование безопасности, предъявляемое федеральным законом. Требования безопасности расширяются нормативными документами.

Кабели и кабельная арматура, к которым предъявляются требования пожарной безопасности, должны удовлетворять требованию по нераспространению горения. Для кабелей, проложенных пучком, каждый из которых удовлетворяет требованиям по нераспрпостранению горения только при одиночной прокладке, необходимо применение дополнительных мер, обеспечивающих нераспространение горения.[30]

В зависимости от применения, кабели должны иметь следующие исполнения:

Данные требования не распространяются на кабельные изделия, предназначенные для прокладки в земле и воде, а также на маслонаполненные кабели, обмоточные и неизолированные провода.[32]

При конструировании кабелей основными техническими решениями по реализации современных требований пожарной безопасности являются:

Устойчивость к нагреву

Нагревостойкость

Нагревостойкость диэлектрика — способность диэлектрика выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком нормальной эксплуатации, без недопустимого ухудшения его свойств. Синонимами являются термины: температуростойкость, термостойкость, термическая устойчивость, термостабильность.[34]

Для электротехнических изделий доминирующим фактором старения электроизоляционных материалов и систем изоляции является температура, для оценки стойкости электрической изоляции электротехнических изделий к воздействию температуры приняты классы нагревостойкости: Y — 90 °C, А — 105 °C, Е — 120 °C, В — 130 °C, F — 155 °C, Н — 180 °C, 200 — 200 °C, 220 — 220 °C, 250 — 250 °C. Температура выше 250°С должна повышаться на интервал в 25°С с присвоением соответствующих классов.[35]

Огнестойкость

Огнестойкость — параметр, характеризующий работоспособность кабельного изделия, то есть способность кабельного изделия продолжать выполнять заданные функции при воздействии и после воздействия источником пламени в течение заданного периода времени.[36]

Кабель с металлической оболочкой и магнезиальной изоляцией (с защитной полимерной оболочкой поверх металлической)

Современные производители представляют огнестойкие кабели трех типов:

В России испытания огнестойких кабелей производятся при стандартном температурном режиме в испытательной печи. Режим может создаваться комбинированным нагревом: излучением от электронагревателей и тепловыделением от регулируемых газовых или жидкостных горелок. Прямое воздействие пламени горелок на испытуемый образец должно быть исключено. Образец представляет собой кабельную линию в проектном исполнении, которая устанавливается в испытательной печи в соответствии с технической документацией на данное изделие. При использовании коробов, лотков или труб образец устанавливают в испытательную печь горизонтально таким образом, чтобы место стыка находилось в середине испытательной печи.[38] В испытательных печах должен быть создан стандартный температурный режим, характеризуемый следующей зависимостью:

Т — То = 345 lg(8t + 1), °C ;

где:

При необходимости может быть создан другой температурный режим, учитывающий реальные условия пожара.[39]

В Великобритании огнестойкие кабели делятся на два класса: Standard (стандартный) и Enhanced (повышенный). Standard — класс огнестойкости 30 минут, Enhanced — класс огнестойкости 120 минут. Кабели в версии Enhanced разработаны для применения в зданиях высотой более 30 м и других зданиях общественного пользования, которые имеют большое количество эвакуационных зон (четыре или больше), в которых люди могут находиться значительное время. В процессе испытаний образцы кабелей подвергаются воздействию пламени, ударам и воздействию воды. В Германии классификация имеет три класса огнестойкости: E30, E60 и E90 с нормируемым временем испытаний 30, 60 и 90 мин, соответственно, в течение которого не должно быть коротких замыканий в испытуемой прокладке кабелей. В отличие от Великобритании, в Германии предусмотрены испытания комплектных конструкций кабельных коммуникаций, включающих в себя не только кабели, но и конструкции кабельных прокладок, таких как прокладка в коробах, на консолях и подвесках. При этом удары и воздействия воды при испытаниях отсутствуют.[40]

См. также

Примечания

  1. КАБЕЛЬНАЯ ПРОМЫШЛЕННОСТЬ РОССИИ И СТРАН СНГ. ЭТАПЫ РАЗВИТИЯ, НОВЫЕ ЗАДАЧИ // Кабели и провода № 45 (3178), 2009
  2. Григорьян А. Г., Дикерман Д. Н., Пешков И. Б. Производство кабелей и проводов с применением пластмасс и резин. — М.: Энергоатомиздат, 1992. — С. 5.
  3. 1 2 3 Бачелис, 1971
  4. Тирановский Г. Г. Монтаж автоматического пожаротушения в кабельных сооружениях энергетических объектов. — М.: Энергоиздат, 1982. С. 4
  5. http://www.complexdoc.ru/ntdpdf/570153/kabeli_silovye_s_plastmassovoi_izolyatsiei_tekhnicheskie_usloviya.pdf
  6. http://www.complexdoc.ru/ntdpdf/483202/plastikat_polivinilkhloridnyi_dlya_izolyatsii_i_zashchitnykh_obolochek_prov.pdf
  7. И. Г. Довженко. ПЛАСТИКАТЫ С НИЗКОЙ ПОЖАРНОЙ ОПАСНОСТЬЮ ТИПА ПП (ТОРГОВОЕ НАЗВАНИЕ «LOWSGRAN»)
  8. 1 2 3 Смелков, 2009
  9. Разработка нового ГОСТа на кабельные ПВХ пластикаты // Общие вопросы // Наука и технологии | Neftegaz.RU
  10. Внедрение новых национальных стандартов ГОСТ Р 53768-2010 и ГОСТ Р 53769-2010 — RusCable.Ru
  11. Белорусов Н. И. и др. Электрические провода, кабели и шнуры: Справочник. М.: Энергоатомиздат, 1988. С. 10
  12. Пожарная безопасность в строительстве. Апрель 2009 № 2 // Водяной А. В. Останкинская телебашня: мифы и реальность. Часть 1. С. 77-79
  13. ГОСТ 15845-80. ИЗДЕЛИЯ КАБЕЛЬНЫЕ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
  14. Кашолкин Б. И., Мешалкин Е. А. Тушение пожаров в электроустановках. — М.: Энергоатомиздат, 1985. С. 21
  15. Белорусов Н. И. и др. Электрические провода, кабели и шнуры: Справочник. М.: Энергоатомиздат, 1988. С. 19
  16. Проблемы обеспечения пожарной безопасности кабельных потоков
  17. М. К. Каменский. Основные аспекты пожарной безопасности электрических кабелей // КАБЕЛЬ−news № 6-7 июнь — июль 2009
  18. 1 2 http://www.kabel-news.ru/netcat_files/90/100/june_V.V._Urusov_doklad.pdf
  19. НПБ 242-97 Классификация и методы определения пожарной опасности электрических кабельных линий
  20. Состояние и перспективы производства электрических кабелей с повышенными показателями пожарной безопасности
  21. http://www.kabel-news.ru/netcat_files/90/100/june_V._P._Prohorov_doklad.pdf
  22. Обзор минеральных антипиренов-гидроксидов для безгалогенных кабельных композиций // Кабель-news № 8, август 2009
  23. ФЗ-123. Технический регламент о требованиях пожарной безопасности. Статья 82. Требования пожарной безопасности к электроустановкам зданий, сооружений и строений
  24. ГОСТ Р 53315-2009. Кабельные изделия. Требования пожарной безопасности. П. 5.11
  25. ГОСТ Р МЭК 60332-3-21-2005 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-21. РАСПРОСТРАНЕНИЕ ПЛАМЕНИ ПО ВЕРТИКАЛЬНО РАСПОЛОЖЕННЫМ ПУЧКАМ ПРОВОДОВ ИЛИ КАБЕЛЕЙ. Категория A F/R. П. 1
  26. ГОСТ Р МЭК 60332-3-22-2005 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-22. РАСПРОСТРАНЕНИЕ ПЛАМЕНИ ПО ВЕРТИКАЛЬНО РАСПОЛОЖЕННЫМ ПУЧКАМ ПРОВОДОВ ИЛИ КАБЕЛЕЙ. Категория А. П. 1
  27. ГОСТ Р МЭК 60332-3-23-2005 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-23. РАСПРОСТРАНЕНИЕ ПЛАМЕНИ ПО ВЕРТИКАЛЬНО РАСПОЛОЖЕННЫМ ПУЧКАМ ПРОВОДОВ ИЛИ КАБЕЛЕЙ. Категория В. П. 1
  28. ГОСТ Р МЭК 60332-3-24-2005 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-24. РАСПРОСТРАНЕНИЕ ПЛАМЕНИ ПО ВЕРТИКАЛЬНО РАСПОЛОЖЕННЫМ ПУЧКАМ ПРОВОДОВ ИЛИ КАБЕЛЕЙ. Категория С. П. 1
  29. ГОСТ Р МЭК 60332-3-25-2005 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-25. РАСПРОСТРАНЕНИЕ ПЛАМЕНИ ПО ВЕРТИКАЛЬНО РАСПОЛОЖЕННЫМ ПУЧКАМ ПРОВОДОВ ИЛИ КАБЕЛЕЙ. Категория D. П. 1
  30. ГОСТ 12.2.007.14-75. ССБТ. Кабели и кабельная арматура. Требования безопасности. Пункт 2
  31. ГОСТ Р 53315-2009. КАБЕЛЬНЫЕ ИЗДЕЛИЯ. ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ. Таблица 2: Преимущественные области применения кабельных изделий с учётом их типа исполнения
  32. ГОСТ Р 53315-2009. КАБЕЛЬНЫЕ ИЗДЕЛИЯ. ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ. Область применения
  33. Пожарная безопасность в строительстве. декабрь 2009 № 5 // Байков В. А., Каменский М. К. Кабели с повышенными показателями пожарной безопасности для электропроводок в зданиях и на промышленных предприятиях
  34. ГОСТ 21515-76 МАТЕРИАЛЫ ДИЭЛЕКТРИЧЕСКИЕ. Термины и определения
  35. ГОСТ 8865-93 СИСТЕМЫ ЭЛЕКТРИЧЕСКОЙ ИЗОЛЯЦИИ. Оценка нагревостойкости и классификация. П. 2.1
  36. ГОСТ Р 53315-2009 КАБЕЛЬНЫЕ ИЗДЕЛИЯ. ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ. Раздел 3. Термины и определения
  37. Д. Королев. Федеральный закон № 123 и кабель для противопожарных систем // «Алгоритм Безопасности» № 4, 2010 год
  38. ГОСТ Р 53316-2009 ЭЛЕКТРИЧЕСКИЕ ЩИТЫ И КАБЕЛЬНЫЕ ЛИНИИ. СОХРАНЕНИЕ РАБОТОСПОСОБНОСТИ В УСЛОВИЯХ ПОЖАРА. Методы испытаний. 4.2. Метод определения времени работоспособности кабельной линии при воздействии стандартного температурного режима
  39. ГОСТ 30247.0-94 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ КОНСТРУКЦИИ СТРОИТЕЛЬНЫЕ. Методы испытаний на огнестойкость. Общие требования. 6. ТЕМПЕРАТУРНЫЙ РЕЖИМ
  40. Огнестойкие кабели по английским и немецким стандартам. Конструкции и испытания // КАБЕЛИ И ПРОВОДА 2009 № 4

Литература

Ссылки

commons: Фото и Видео на Викискладе?