Иррациональные числа | это... Что такое Иррациональные числа? (original) (raw)
Иррациональные числа
Иррациональные числа
Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть которое не может быть представленным в виде дроби , где m — целое число, n — натуральное число. О существовании иррациональных чисел, точнее отрезков, несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа
.
Множество иррациональных чисел обычно обозначается . Таким образом
— множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.
Содержание
Свойства
- Всякое вещественное число может быть записано бесконечной десятичной дробью, при этом иррациональные числа и только они записываются непериодическими бесконечными десятичными дробями.
- Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
- Каждое трансцендентное число является иррациональным.
- Каждое иррациональное число является либо алгебраическим, либо трансцендентным.
- Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.
- Множество иррациональных чисел несчётно, является множеством второй категории.
Теоремы
— иррациональное число
Допустим противное: рационален, то есть представляется в виде несократимой дроби
, где m и n — целые числа. Возведём предполагаемое равенство в квадрат:
.
Отсюда следует, что m_2 чётно, значит, чётно и m. Пускай m = 2_r, где r целое. Тогда
Следовательно, _n_2 чётно, значит, чётно и n. Мы получили, что m и n чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и
— иррациональное число.
log23 — иррациональное число
Допустим противное: log23 рационален, то есть представляется в виде дроби , где m и n — целые числа. Поскольку log23 > 0, m и n могут быть выбраны положительными. Тогда
Но 2_m_ чётно, а 3_n_ нечётно. Получаем противоречие.
e — иррациональное число
См. раздел «Доказательство иррациональности» в статье «e».
Другие иррациональные числа
Иррациональными являются:
Wikimedia Foundation.2010.
Полезное
Смотреть что такое "Иррациональные числа" в других словарях:
- Числа с собственными именами — В этот список включены числа, имеющие собственные названия, не являющиеся стандартными сложносоставными названиями чисел. Именные названия степеней тысячи приводятся, только если у них есть иные названия. Содержание 1 Натуральные числа 1.1… … Википедия
- Числа Кэли — Алгебра Кэли определённый тип гиперкомплексных чисел, 8 мерная алгебра над полем вещественных чисел. Обычно обозначается , поскольку её элементы (числа Кэли) называются иногда октонионами или октавами. Число Кэли это линейная комбинация… … Википедия
- Конструктивные способы определения вещественного числа — При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты,… … Википедия
- Вещественные числа — Вещественные, или действительные[1] числа математическая абстракция, служащая, в частности, для представления и сравнения значений физических величин. Такое число может быть интуитивно представлено как описывающее положение точки на прямой.… … Википедия
- Действительные числа — Вещественные, или действительные[1] числа математическая абстракция, служащая, в частности, для представления и сравнения значений физических величин. Такое число может быть интуитивно представлено как описывающее положение точки на прямой.… … Википедия
- Реальные числа — Вещественные, или действительные[1] числа математическая абстракция, служащая, в частности, для представления и сравнения значений физических величин. Такое число может быть интуитивно представлено как описывающее положение точки на прямой.… … Википедия
- Двойные числа — О гиперкомплексных числах параболического типа см. дуальные числа Двойные числа или паракомплексные числа, расщепляемые комплексные числа, комплексные числа гиперболического типа гиперкомплексные числа вида « », где и вещественные… … Википедия
- Дуальные числа — или (гипер)комплексные числа параболического типа гиперкомплексные числа вида , где и вещественные числа, и . Любое дуальное число однозначно определяется такой парой чисел и . Множество всех дуальных чисел образует двумерную коммутативную … Википедия
- Супернатуральные числа — (иногда также именумые обобщённые натуральные числа или числа Стейница) являются обобщением натуральных чисел. Супернатуральное число является формальным произведением: где может быть любым простым числом, а каждое является или натуральным числом … Википедия
- Кубические простые числа — Кубические простые числа это простые числа, которые являются решением одного из двух кубических уравнений третей степени от переменных x и y. Первое из них: [1] и первые несколько таких кубических простых чисел: 7, 19, 37, 61, 127, 271, 331 … Википедия