mod.rs - source (original) (raw)

rustdoc/clean/

mod.rs

1//! This module defines the primary IR[^1] used in rustdoc together with the procedures that
2//! transform rustc data types into it.
3//!
4//! This IR — commonly referred to as the *cleaned AST* — is modeled after the [AST][ast].
5//!
6//! There are two kinds of transformation — *cleaning* — procedures:
7//!
8//! 1. Cleans [HIR][hir] types. Used for user-written code and inlined local re-exports
9//!    both found in the local crate.
10//! 2. Cleans [`rustc_middle::ty`] types. Used for inlined cross-crate re-exports and anything
11//!    output by the trait solver (e.g., when synthesizing blanket and auto-trait impls).
12//!    They usually have `ty` or `middle` in their name.
13//!
14//! Their name is prefixed by `clean_`.
15//!
16//! Both the HIR and the `rustc_middle::ty` IR are quite removed from the source code.
17//! The cleaned AST on the other hand is closer to it which simplifies the rendering process.
18//! Furthermore, operating on a single IR instead of two avoids duplicating efforts down the line.
19//!
20//! This IR is consumed by both the HTML and the JSON backend.
21//!
22//! [^1]: Intermediate representation.
23
24mod auto_trait;
25mod blanket_impl;
26pub(crate) mod cfg;
27pub(crate) mod inline;
28mod render_macro_matchers;
29mod simplify;
30pub(crate) mod types;
31pub(crate) mod utils;
32
33use std::borrow::Cow;
34use std::collections::BTreeMap;
35use std::mem;
36
37use rustc_ast::token::{Token, TokenKind};
38use rustc_ast::tokenstream::{TokenStream, TokenTree};
39use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
40use rustc_errors::codes::*;
41use rustc_errors::{FatalError, struct_span_code_err};
42use rustc_hir::PredicateOrigin;
43use rustc_hir::def::{CtorKind, DefKind, Res};
44use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LOCAL_CRATE, LocalDefId};
45use rustc_hir_analysis::hir_ty_lowering::FeedConstTy;
46use rustc_hir_analysis::{lower_const_arg_for_rustdoc, lower_ty};
47use rustc_middle::metadata::Reexport;
48use rustc_middle::middle::resolve_bound_vars as rbv;
49use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt, TypingMode};
50use rustc_middle::{bug, span_bug};
51use rustc_span::ExpnKind;
52use rustc_span:🪥:{AstPass, MacroKind};
53use rustc_span::symbol::{Ident, Symbol, kw, sym};
54use rustc_trait_selection::traits::wf::object_region_bounds;
55use thin_vec::ThinVec;
56use tracing::{debug, instrument};
57use utils::*;
58use {rustc_ast as ast, rustc_hir as hir};
59
60pub(crate) use self::types::*;
61pub(crate) use self::utils::{krate, register_res, synthesize_auto_trait_and_blanket_impls};
62use crate::core::DocContext;
63use crate::formats::item_type::ItemType;
64use crate::visit_ast::Module as DocModule;
65
66pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
67    let mut items: Vec<Item> = vec![];
68    let mut inserted = FxHashSet::default();
69    items.extend(doc.foreigns.iter().map(|(item, renamed)| {
70        let item = clean_maybe_renamed_foreign_item(cx, item, *renamed);
71        if let Some(name) = item.name
72            && (cx.render_options.document_hidden || !item.is_doc_hidden())
73        {
74            inserted.insert((item.type_(), name));
75        }
76        item
77    }));
78    items.extend(doc.mods.iter().filter_map(|x| {
79        if !inserted.insert((ItemType::Module, x.name)) {
80            return None;
81        }
82        let item = clean_doc_module(x, cx);
83        if !cx.render_options.document_hidden && item.is_doc_hidden() {
84            // Hidden modules are stripped at a later stage.
85            // If a hidden module has the same name as a visible one, we want
86            // to keep both of them around.
87            inserted.remove(&(ItemType::Module, x.name));
88        }
89        Some(item)
90    }));
91
92    // Split up imports from all other items.
93    //
94    // This covers the case where somebody does an import which should pull in an item,
95    // but there's already an item with the same namespace and same name. Rust gives
96    // priority to the not-imported one, so we should, too.
97    items.extend(doc.items.values().flat_map(|(item, renamed, import_id)| {
98        // First, lower everything other than glob imports.
99        if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
100            return Vec::new();
101        }
102        let v = clean_maybe_renamed_item(cx, item, *renamed, *import_id);
103        for item in &v {
104            if let Some(name) = item.name
105                && (cx.render_options.document_hidden || !item.is_doc_hidden())
106            {
107                inserted.insert((item.type_(), name));
108            }
109        }
110        v
111    }));
112    items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
113        let Some(def_id) = res.opt_def_id() else { return Vec::new() };
114        let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
115        let import = cx.tcx.hir_expect_item(*local_import_id);
116        match import.kind {
117            hir::ItemKind::Use(path, kind) => {
118                let hir::UsePath { segments, span, .. } = *path;
119                let path = hir::Path { segments, res: *res, span };
120                clean_use_statement_inner(
121                    import,
122                    Some(name),
123                    &path,
124                    kind,
125                    cx,
126                    &mut Default::default(),
127                )
128            }
129            _ => unreachable!(),
130        }
131    }));
132    items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
133        // Now we actually lower the imports, skipping everything else.
134        if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
135            clean_use_statement(item, *renamed, path, hir::UseKind::Glob, cx, &mut inserted)
136        } else {
137            // skip everything else
138            Vec::new()
139        }
140    }));
141
142    // determine if we should display the inner contents or
143    // the outer `mod` item for the source code.
144
145    let span = Span::new({
146        let where_outer = doc.where_outer(cx.tcx);
147        let sm = cx.sess().source_map();
148        let outer = sm.lookup_char_pos(where_outer.lo());
149        let inner = sm.lookup_char_pos(doc.where_inner.lo());
150        if outer.file.start_pos == inner.file.start_pos {
151            // mod foo { ... }
152            where_outer
153        } else {
154            // mod foo; (and a separate SourceFile for the contents)
155            doc.where_inner
156        }
157    });
158
159    let kind = ModuleItem(Module { items, span });
160    generate_item_with_correct_attrs(
161        cx,
162        kind,
163        doc.def_id.to_def_id(),
164        doc.name,
165        doc.import_id,
166        doc.renamed,
167    )
168}
169
170fn is_glob_import(tcx: TyCtxt<'_>, import_id: LocalDefId) -> bool {
171    if let hir::Node::Item(item) = tcx.hir_node_by_def_id(import_id)
172        && let hir::ItemKind::Use(_, use_kind) = item.kind
173    {
174        use_kind == hir::UseKind::Glob
175    } else {
176        false
177    }
178}
179
180fn generate_item_with_correct_attrs(
181    cx: &mut DocContext<'_>,
182    kind: ItemKind,
183    def_id: DefId,
184    name: Symbol,
185    import_id: Option<LocalDefId>,
186    renamed: Option<Symbol>,
187) -> Item {
188    let target_attrs = inline::load_attrs(cx, def_id);
189    let attrs = if let Some(import_id) = import_id {
190        // glob reexports are treated the same as `#[doc(inline)]` items.
191        //
192        // For glob re-exports the item may or may not exist to be re-exported (potentially the cfgs
193        // on the path up until the glob can be removed, and only cfgs on the globbed item itself
194        // matter), for non-inlined re-exports see #85043.
195        let is_inline = hir_attr_lists(inline::load_attrs(cx, import_id.to_def_id()), sym::doc)
196            .get_word_attr(sym::inline)
197            .is_some()
198            || (is_glob_import(cx.tcx, import_id)
199                && (cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id)));
200        let mut attrs = get_all_import_attributes(cx, import_id, def_id, is_inline);
201        add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
202        attrs
203    } else {
204        // We only keep the item's attributes.
205        target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
206    };
207    let cfg = extract_cfg_from_attrs(
208        attrs.iter().map(move |(attr, _)| match attr {
209            Cow::Borrowed(attr) => *attr,
210            Cow::Owned(attr) => attr,
211        }),
212        cx.tcx,
213        &cx.cache.hidden_cfg,
214    );
215    let attrs = Attributes::from_hir_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
216
217    let name = renamed.or(Some(name));
218    let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, attrs, cfg);
219    item.inner.inline_stmt_id = import_id;
220    item
221}
222
223fn clean_generic_bound<'tcx>(
224    bound: &hir::GenericBound<'tcx>,
225    cx: &mut DocContext<'tcx>,
226) -> Option<GenericBound> {
227    Some(match *bound {
228        hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
229        hir::GenericBound::Trait(ref t) => {
230            // `T: ~const Destruct` is hidden because `T: Destruct` is a no-op.
231            if let hir::BoundConstness::Maybe(_) = t.modifiers.constness
232                && cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
233            {
234                return None;
235            }
236
237            GenericBound::TraitBound(clean_poly_trait_ref(t, cx), t.modifiers)
238        }
239        hir::GenericBound::Use(args, ..) => {
240            GenericBound::Use(args.iter().map(|arg| clean_precise_capturing_arg(arg, cx)).collect())
241        }
242    })
243}
244
245pub(crate) fn clean_trait_ref_with_constraints<'tcx>(
246    cx: &mut DocContext<'tcx>,
247    trait_ref: ty::PolyTraitRef<'tcx>,
248    constraints: ThinVec<AssocItemConstraint>,
249) -> Path {
250    let kind = cx.tcx.def_kind(trait_ref.def_id()).into();
251    if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
252        span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
253    }
254    inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
255    let path = clean_middle_path(
256        cx,
257        trait_ref.def_id(),
258        true,
259        constraints,
260        trait_ref.map_bound(|tr| tr.args),
261    );
262
263    debug!(?trait_ref);
264
265    path
266}
267
268fn clean_poly_trait_ref_with_constraints<'tcx>(
269    cx: &mut DocContext<'tcx>,
270    poly_trait_ref: ty::PolyTraitRef<'tcx>,
271    constraints: ThinVec<AssocItemConstraint>,
272) -> GenericBound {
273    GenericBound::TraitBound(
274        PolyTrait {
275            trait_: clean_trait_ref_with_constraints(cx, poly_trait_ref, constraints),
276            generic_params: clean_bound_vars(poly_trait_ref.bound_vars()),
277        },
278        hir::TraitBoundModifiers::NONE,
279    )
280}
281
282fn clean_lifetime(lifetime: &hir::Lifetime, cx: &DocContext<'_>) -> Lifetime {
283    if let Some(
284        rbv::ResolvedArg::EarlyBound(did)
285        | rbv::ResolvedArg::LateBound(_, _, did)
286        | rbv::ResolvedArg::Free(_, did),
287    ) = cx.tcx.named_bound_var(lifetime.hir_id)
288        && let Some(lt) = cx.args.get(&did.to_def_id()).and_then(|arg| arg.as_lt())
289    {
290        return *lt;
291    }
292    Lifetime(lifetime.ident.name)
293}
294
295pub(crate) fn clean_precise_capturing_arg(
296    arg: &hir::PreciseCapturingArg<'_>,
297    cx: &DocContext<'_>,
298) -> PreciseCapturingArg {
299    match arg {
300        hir::PreciseCapturingArg::Lifetime(lt) => {
301            PreciseCapturingArg::Lifetime(clean_lifetime(lt, cx))
302        }
303        hir::PreciseCapturingArg::Param(param) => PreciseCapturingArg::Param(param.ident.name),
304    }
305}
306
307pub(crate) fn clean_const<'tcx>(
308    constant: &hir::ConstArg<'tcx>,
309    _cx: &mut DocContext<'tcx>,
310) -> ConstantKind {
311    match &constant.kind {
312        hir::ConstArgKind::Path(qpath) => {
313            ConstantKind::Path { path: qpath_to_string(qpath).into() }
314        }
315        hir::ConstArgKind::Anon(anon) => ConstantKind::Anonymous { body: anon.body },
316        hir::ConstArgKind::Infer(..) => ConstantKind::Infer,
317    }
318}
319
320pub(crate) fn clean_middle_const<'tcx>(
321    constant: ty::Binder<'tcx, ty::Const<'tcx>>,
322    _cx: &mut DocContext<'tcx>,
323) -> ConstantKind {
324    // FIXME: instead of storing the stringified expression, store `self` directly instead.
325    ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() }
326}
327
328pub(crate) fn clean_middle_region(region: ty::Region<'_>) -> Option<Lifetime> {
329    match region.kind() {
330        ty::ReStatic => Some(Lifetime::statik()),
331        _ if !region.has_name() => None,
332        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(_, name), .. }) => {
333            Some(Lifetime(name))
334        }
335        ty::ReEarlyParam(ref data) => Some(Lifetime(data.name)),
336        ty::ReBound(..)
337        | ty::ReLateParam(..)
338        | ty::ReVar(..)
339        | ty::ReError(_)
340        | ty::RePlaceholder(..)
341        | ty::ReErased => {
342            debug!("cannot clean region {region:?}");
343            None
344        }
345    }
346}
347
348fn clean_where_predicate<'tcx>(
349    predicate: &hir::WherePredicate<'tcx>,
350    cx: &mut DocContext<'tcx>,
351) -> Option<WherePredicate> {
352    if !predicate.kind.in_where_clause() {
353        return None;
354    }
355    Some(match *predicate.kind {
356        hir::WherePredicateKind::BoundPredicate(ref wbp) => {
357            let bound_params = wbp
358                .bound_generic_params
359                .iter()
360                .map(|param| clean_generic_param(cx, None, param))
361                .collect();
362            WherePredicate::BoundPredicate {
363                ty: clean_ty(wbp.bounded_ty, cx),
364                bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
365                bound_params,
366            }
367        }
368
369        hir::WherePredicateKind::RegionPredicate(ref wrp) => WherePredicate::RegionPredicate {
370            lifetime: clean_lifetime(wrp.lifetime, cx),
371            bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
372        },
373
374        hir::WherePredicateKind::EqPredicate(ref wrp) => WherePredicate::EqPredicate {
375            lhs: clean_ty(wrp.lhs_ty, cx),
376            rhs: clean_ty(wrp.rhs_ty, cx).into(),
377        },
378    })
379}
380
381pub(crate) fn clean_predicate<'tcx>(
382    predicate: ty::Clause<'tcx>,
383    cx: &mut DocContext<'tcx>,
384) -> Option<WherePredicate> {
385    let bound_predicate = predicate.kind();
386    match bound_predicate.skip_binder() {
387        ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
388        ty::ClauseKind::RegionOutlives(pred) => Some(clean_region_outlives_predicate(pred)),
389        ty::ClauseKind::TypeOutlives(pred) => {
390            Some(clean_type_outlives_predicate(bound_predicate.rebind(pred), cx))
391        }
392        ty::ClauseKind::Projection(pred) => {
393            Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
394        }
395        // FIXME(generic_const_exprs): should this do something?
396        ty::ClauseKind::ConstEvaluatable(..)
397        | ty::ClauseKind::WellFormed(..)
398        | ty::ClauseKind::ConstArgHasType(..)
399        // FIXME(const_trait_impl): We can probably use this `HostEffect` pred to render `~const`.
400        | ty::ClauseKind::HostEffect(_) => None,
401    }
402}
403
404fn clean_poly_trait_predicate<'tcx>(
405    pred: ty::PolyTraitPredicate<'tcx>,
406    cx: &mut DocContext<'tcx>,
407) -> Option<WherePredicate> {
408    // `T: ~const Destruct` is hidden because `T: Destruct` is a no-op.
409    // FIXME(const_trait_impl) check constness
410    if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
411        return None;
412    }
413
414    let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
415    Some(WherePredicate::BoundPredicate {
416        ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
417        bounds: vec![clean_poly_trait_ref_with_constraints(cx, poly_trait_ref, ThinVec::new())],
418        bound_params: Vec::new(),
419    })
420}
421
422fn clean_region_outlives_predicate(pred: ty::RegionOutlivesPredicate<'_>) -> WherePredicate {
423    let ty::OutlivesPredicate(a, b) = pred;
424
425    WherePredicate::RegionPredicate {
426        lifetime: clean_middle_region(a).expect("failed to clean lifetime"),
427        bounds: vec![GenericBound::Outlives(
428            clean_middle_region(b).expect("failed to clean bounds"),
429        )],
430    }
431}
432
433fn clean_type_outlives_predicate<'tcx>(
434    pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
435    cx: &mut DocContext<'tcx>,
436) -> WherePredicate {
437    let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
438
439    WherePredicate::BoundPredicate {
440        ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
441        bounds: vec![GenericBound::Outlives(
442            clean_middle_region(lt).expect("failed to clean lifetimes"),
443        )],
444        bound_params: Vec::new(),
445    }
446}
447
448fn clean_middle_term<'tcx>(
449    term: ty::Binder<'tcx, ty::Term<'tcx>>,
450    cx: &mut DocContext<'tcx>,
451) -> Term {
452    match term.skip_binder().unpack() {
453        ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
454        ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
455    }
456}
457
458fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
459    match term {
460        hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
461        hir::Term::Const(c) => {
462            let ct = lower_const_arg_for_rustdoc(cx.tcx, c, FeedConstTy::No);
463            Term::Constant(clean_middle_const(ty::Binder::dummy(ct), cx))
464        }
465    }
466}
467
468fn clean_projection_predicate<'tcx>(
469    pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
470    cx: &mut DocContext<'tcx>,
471) -> WherePredicate {
472    WherePredicate::EqPredicate {
473        lhs: clean_projection(
474            pred.map_bound(|p| {
475                // FIXME: This needs to be made resilient for `AliasTerm`s that
476                // are associated consts.
477                p.projection_term.expect_ty(cx.tcx)
478            }),
479            cx,
480            None,
481        ),
482        rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
483    }
484}
485
486fn clean_projection<'tcx>(
487    ty: ty::Binder<'tcx, ty::AliasTy<'tcx>>,
488    cx: &mut DocContext<'tcx>,
489    def_id: Option<DefId>,
490) -> Type {
491    if cx.tcx.is_impl_trait_in_trait(ty.skip_binder().def_id) {
492        return clean_middle_opaque_bounds(cx, ty.skip_binder().def_id, ty.skip_binder().args);
493    }
494
495    let trait_ = clean_trait_ref_with_constraints(
496        cx,
497        ty.map_bound(|ty| ty.trait_ref(cx.tcx)),
498        ThinVec::new(),
499    );
500    let self_type = clean_middle_ty(ty.map_bound(|ty| ty.self_ty()), cx, None, None);
501    let self_def_id = if let Some(def_id) = def_id {
502        cx.tcx.opt_parent(def_id).or(Some(def_id))
503    } else {
504        self_type.def_id(&cx.cache)
505    };
506    let should_show_cast = compute_should_show_cast(self_def_id, &trait_, &self_type);
507    Type::QPath(Box::new(QPathData {
508        assoc: projection_to_path_segment(ty, cx),
509        should_show_cast,
510        self_type,
511        trait_: Some(trait_),
512    }))
513}
514
515fn compute_should_show_cast(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
516    !trait_.segments.is_empty()
517        && self_def_id
518            .zip(Some(trait_.def_id()))
519            .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
520}
521
522fn projection_to_path_segment<'tcx>(
523    ty: ty::Binder<'tcx, ty::AliasTy<'tcx>>,
524    cx: &mut DocContext<'tcx>,
525) -> PathSegment {
526    let def_id = ty.skip_binder().def_id;
527    let item = cx.tcx.associated_item(def_id);
528    let generics = cx.tcx.generics_of(def_id);
529    PathSegment {
530        name: item.name(),
531        args: GenericArgs::AngleBracketed {
532            args: clean_middle_generic_args(
533                cx,
534                ty.map_bound(|ty| &ty.args[generics.parent_count..]),
535                false,
536                def_id,
537            ),
538            constraints: Default::default(),
539        },
540    }
541}
542
543fn clean_generic_param_def(
544    def: &ty::GenericParamDef,
545    defaults: ParamDefaults,
546    cx: &mut DocContext<'_>,
547) -> GenericParamDef {
548    let (name, kind) = match def.kind {
549        ty::GenericParamDefKind::Lifetime => {
550            (def.name, GenericParamDefKind::Lifetime { outlives: ThinVec::new() })
551        }
552        ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
553            let default = if let ParamDefaults::Yes = defaults
554                && has_default
555            {
556                Some(clean_middle_ty(
557                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
558                    cx,
559                    Some(def.def_id),
560                    None,
561                ))
562            } else {
563                None
564            };
565            (
566                def.name,
567                GenericParamDefKind::Type {
568                    bounds: ThinVec::new(), // These are filled in from the where-clauses.
569                    default: default.map(Box::new),
570                    synthetic,
571                },
572            )
573        }
574        ty::GenericParamDefKind::Const { has_default, synthetic } => (
575            def.name,
576            GenericParamDefKind::Const {
577                ty: Box::new(clean_middle_ty(
578                    ty::Binder::dummy(
579                        cx.tcx
580                            .type_of(def.def_id)
581                            .no_bound_vars()
582                            .expect("const parameter types cannot be generic"),
583                    ),
584                    cx,
585                    Some(def.def_id),
586                    None,
587                )),
588                default: if let ParamDefaults::Yes = defaults
589                    && has_default
590                {
591                    Some(Box::new(
592                        cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
593                    ))
594                } else {
595                    None
596                },
597                synthetic,
598            },
599        ),
600    };
601
602    GenericParamDef { name, def_id: def.def_id, kind }
603}
604
605/// Whether to clean generic parameter defaults or not.
606enum ParamDefaults {
607    Yes,
608    No,
609}
610
611fn clean_generic_param<'tcx>(
612    cx: &mut DocContext<'tcx>,
613    generics: Option<&hir::Generics<'tcx>>,
614    param: &hir::GenericParam<'tcx>,
615) -> GenericParamDef {
616    let (name, kind) = match param.kind {
617        hir::GenericParamKind::Lifetime { .. } => {
618            let outlives = if let Some(generics) = generics {
619                generics
620                    .outlives_for_param(param.def_id)
621                    .filter(|bp| !bp.in_where_clause)
622                    .flat_map(|bp| bp.bounds)
623                    .map(|bound| match bound {
624                        hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
625                        _ => panic!(),
626                    })
627                    .collect()
628            } else {
629                ThinVec::new()
630            };
631            (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
632        }
633        hir::GenericParamKind::Type { ref default, synthetic } => {
634            let bounds = if let Some(generics) = generics {
635                generics
636                    .bounds_for_param(param.def_id)
637                    .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
638                    .flat_map(|bp| bp.bounds)
639                    .filter_map(|x| clean_generic_bound(x, cx))
640                    .collect()
641            } else {
642                ThinVec::new()
643            };
644            (
645                param.name.ident().name,
646                GenericParamDefKind::Type {
647                    bounds,
648                    default: default.map(|t| clean_ty(t, cx)).map(Box::new),
649                    synthetic,
650                },
651            )
652        }
653        hir::GenericParamKind::Const { ty, default, synthetic } => (
654            param.name.ident().name,
655            GenericParamDefKind::Const {
656                ty: Box::new(clean_ty(ty, cx)),
657                default: default.map(|ct| {
658                    Box::new(lower_const_arg_for_rustdoc(cx.tcx, ct, FeedConstTy::No).to_string())
659                }),
660                synthetic,
661            },
662        ),
663    };
664
665    GenericParamDef { name, def_id: param.def_id.to_def_id(), kind }
666}
667
668/// Synthetic type-parameters are inserted after normal ones.
669/// In order for normal parameters to be able to refer to synthetic ones,
670/// scans them first.
671fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
672    match param.kind {
673        hir::GenericParamKind::Type { synthetic, .. } => synthetic,
674        _ => false,
675    }
676}
677
678/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
679///
680/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
681fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
682    matches!(
683        param.kind,
684        hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided(_) }
685    )
686}
687
688pub(crate) fn clean_generics<'tcx>(
689    gens: &hir::Generics<'tcx>,
690    cx: &mut DocContext<'tcx>,
691) -> Generics {
692    let impl_trait_params = gens
693        .params
694        .iter()
695        .filter(|param| is_impl_trait(param))
696        .map(|param| {
697            let param = clean_generic_param(cx, Some(gens), param);
698            match param.kind {
699                GenericParamDefKind::Lifetime { .. } => unreachable!(),
700                GenericParamDefKind::Type { ref bounds, .. } => {
701                    cx.impl_trait_bounds.insert(param.def_id.into(), bounds.to_vec());
702                }
703                GenericParamDefKind::Const { .. } => unreachable!(),
704            }
705            param
706        })
707        .collect::<Vec<_>>();
708
709    let mut bound_predicates = FxIndexMap::default();
710    let mut region_predicates = FxIndexMap::default();
711    let mut eq_predicates = ThinVec::default();
712    for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
713        match pred {
714            WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
715                match bound_predicates.entry(ty) {
716                    IndexEntry::Vacant(v) => {
717                        v.insert((bounds, bound_params));
718                    }
719                    IndexEntry::Occupied(mut o) => {
720                        // we merge both bounds.
721                        for bound in bounds {
722                            if !o.get().0.contains(&bound) {
723                                o.get_mut().0.push(bound);
724                            }
725                        }
726                        for bound_param in bound_params {
727                            if !o.get().1.contains(&bound_param) {
728                                o.get_mut().1.push(bound_param);
729                            }
730                        }
731                    }
732                }
733            }
734            WherePredicate::RegionPredicate { lifetime, bounds } => {
735                match region_predicates.entry(lifetime) {
736                    IndexEntry::Vacant(v) => {
737                        v.insert(bounds);
738                    }
739                    IndexEntry::Occupied(mut o) => {
740                        // we merge both bounds.
741                        for bound in bounds {
742                            if !o.get().contains(&bound) {
743                                o.get_mut().push(bound);
744                            }
745                        }
746                    }
747                }
748            }
749            WherePredicate::EqPredicate { lhs, rhs } => {
750                eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
751            }
752        }
753    }
754
755    let mut params = ThinVec::with_capacity(gens.params.len());
756    // In this loop, we gather the generic parameters (`<'a, B: 'a>`) and check if they have
757    // bounds in the where predicates. If so, we move their bounds into the where predicates
758    // while also preventing duplicates.
759    for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
760        let mut p = clean_generic_param(cx, Some(gens), p);
761        match &mut p.kind {
762            GenericParamDefKind::Lifetime { outlives } => {
763                if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
764                    // We merge bounds in the `where` clause.
765                    for outlive in outlives.drain(..) {
766                        let outlive = GenericBound::Outlives(outlive);
767                        if !region_pred.contains(&outlive) {
768                            region_pred.push(outlive);
769                        }
770                    }
771                }
772            }
773            GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
774                if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
775                    // We merge bounds in the `where` clause.
776                    for bound in bounds.drain(..) {
777                        if !bound_pred.0.contains(&bound) {
778                            bound_pred.0.push(bound);
779                        }
780                    }
781                }
782            }
783            GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
784                // nothing to do here.
785            }
786        }
787        params.push(p);
788    }
789    params.extend(impl_trait_params);
790
791    Generics {
792        params,
793        where_predicates: bound_predicates
794            .into_iter()
795            .map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
796                ty,
797                bounds,
798                bound_params,
799            })
800            .chain(
801                region_predicates
802                    .into_iter()
803                    .map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
804            )
805            .chain(eq_predicates)
806            .collect(),
807    }
808}
809
810fn clean_ty_generics<'tcx>(
811    cx: &mut DocContext<'tcx>,
812    gens: &ty::Generics,
813    preds: ty::GenericPredicates<'tcx>,
814) -> Generics {
815    // Don't populate `cx.impl_trait_bounds` before cleaning where clauses,
816    // since `clean_predicate` would consume them.
817    let mut impl_trait = BTreeMap::<u32, Vec<GenericBound>>::default();
818
819    let params: ThinVec<_> = gens
820        .own_params
821        .iter()
822        .filter(|param| match param.kind {
823            ty::GenericParamDefKind::Lifetime => !param.is_anonymous_lifetime(),
824            ty::GenericParamDefKind::Type { synthetic, .. } => {
825                if param.name == kw::SelfUpper {
826                    debug_assert_eq!(param.index, 0);
827                    return false;
828                }
829                if synthetic {
830                    impl_trait.insert(param.index, vec![]);
831                    return false;
832                }
833                true
834            }
835            ty::GenericParamDefKind::Const { .. } => true,
836        })
837        .map(|param| clean_generic_param_def(param, ParamDefaults::Yes, cx))
838        .collect();
839
840    // param index -> [(trait DefId, associated type name & generics, term)]
841    let mut impl_trait_proj =
842        FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
843
844    let where_predicates = preds
845        .predicates
846        .iter()
847        .flat_map(|(pred, _)| {
848            let mut projection = None;
849            let param_idx = {
850                let bound_p = pred.kind();
851                match bound_p.skip_binder() {
852                    ty::ClauseKind::Trait(pred) if let ty::Param(param) = pred.self_ty().kind() => {
853                        Some(param.index)
854                    }
855                    ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg))
856                        if let ty::Param(param) = ty.kind() =>
857                    {
858                        Some(param.index)
859                    }
860                    ty::ClauseKind::Projection(p)
861                        if let ty::Param(param) = p.projection_term.self_ty().kind() =>
862                    {
863                        projection = Some(bound_p.rebind(p));
864                        Some(param.index)
865                    }
866                    _ => None,
867                }
868            };
869
870            if let Some(param_idx) = param_idx
871                && let Some(bounds) = impl_trait.get_mut(&param_idx)
872            {
873                let pred = clean_predicate(*pred, cx)?;
874
875                bounds.extend(pred.get_bounds().into_iter().flatten().cloned());
876
877                if let Some(proj) = projection
878                    && let lhs = clean_projection(
879                        proj.map_bound(|p| {
880                            // FIXME: This needs to be made resilient for `AliasTerm`s that
881                            // are associated consts.
882                            p.projection_term.expect_ty(cx.tcx)
883                        }),
884                        cx,
885                        None,
886                    )
887                    && let Some((_, trait_did, name)) = lhs.projection()
888                {
889                    impl_trait_proj.entry(param_idx).or_default().push((
890                        trait_did,
891                        name,
892                        proj.map_bound(|p| p.term),
893                    ));
894                }
895
896                return None;
897            }
898
899            Some(pred)
900        })
901        .collect::<Vec<_>>();
902
903    for (idx, mut bounds) in impl_trait {
904        let mut has_sized = false;
905        bounds.retain(|b| {
906            if b.is_sized_bound(cx) {
907                has_sized = true;
908                false
909            } else {
910                true
911            }
912        });
913        if !has_sized {
914            bounds.push(GenericBound::maybe_sized(cx));
915        }
916
917        // Move trait bounds to the front.
918        bounds.sort_by_key(|b| !b.is_trait_bound());
919
920        // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
921        // Since all potential trait bounds are at the front we can just check the first bound.
922        if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
923            bounds.insert(0, GenericBound::sized(cx));
924        }
925
926        if let Some(proj) = impl_trait_proj.remove(&idx) {
927            for (trait_did, name, rhs) in proj {
928                let rhs = clean_middle_term(rhs, cx);
929                simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
930            }
931        }
932
933        cx.impl_trait_bounds.insert(idx.into(), bounds);
934    }
935
936    // Now that `cx.impl_trait_bounds` is populated, we can process
937    // remaining predicates which could contain `impl Trait`.
938    let where_predicates =
939        where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect();
940
941    let mut generics = Generics { params, where_predicates };
942    simplify::sized_bounds(cx, &mut generics);
943    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
944    generics
945}
946
947fn clean_ty_alias_inner_type<'tcx>(
948    ty: Ty<'tcx>,
949    cx: &mut DocContext<'tcx>,
950    ret: &mut Vec<Item>,
951) -> Option<TypeAliasInnerType> {
952    let ty::Adt(adt_def, args) = ty.kind() else {
953        return None;
954    };
955
956    if !adt_def.did().is_local() {
957        cx.with_param_env(adt_def.did(), |cx| {
958            inline::build_impls(cx, adt_def.did(), None, ret);
959        });
960    }
961
962    Some(if adt_def.is_enum() {
963        let variants: rustc_index::IndexVec<_, _> = adt_def
964            .variants()
965            .iter()
966            .map(|variant| clean_variant_def_with_args(variant, args, cx))
967            .collect();
968
969        if !adt_def.did().is_local() {
970            inline::record_extern_fqn(cx, adt_def.did(), ItemType::Enum);
971        }
972
973        TypeAliasInnerType::Enum {
974            variants,
975            is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
976        }
977    } else {
978        let variant = adt_def
979            .variants()
980            .iter()
981            .next()
982            .unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
983
984        let fields: Vec<_> =
985            clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
986
987        if adt_def.is_struct() {
988            if !adt_def.did().is_local() {
989                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Struct);
990            }
991            TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
992        } else {
993            if !adt_def.did().is_local() {
994                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Union);
995            }
996            TypeAliasInnerType::Union { fields }
997        }
998    })
999}
1000
1001fn clean_proc_macro<'tcx>(
1002    item: &hir::Item<'tcx>,
1003    name: &mut Symbol,
1004    kind: MacroKind,
1005    cx: &mut DocContext<'tcx>,
1006) -> ItemKind {
1007    let attrs = cx.tcx.hir_attrs(item.hir_id());
1008    if kind == MacroKind::Derive
1009        && let Some(derive_name) =
1010            hir_attr_lists(attrs, sym::proc_macro_derive).find_map(|mi| mi.ident())
1011    {
1012        *name = derive_name.name;
1013    }
1014
1015    let mut helpers = Vec::new();
1016    for mi in hir_attr_lists(attrs, sym::proc_macro_derive) {
1017        if !mi.has_name(sym::attributes) {
1018            continue;
1019        }
1020
1021        if let Some(list) = mi.meta_item_list() {
1022            for inner_mi in list {
1023                if let Some(ident) = inner_mi.ident() {
1024                    helpers.push(ident.name);
1025                }
1026            }
1027        }
1028    }
1029    ProcMacroItem(ProcMacro { kind, helpers })
1030}
1031
1032fn clean_fn_or_proc_macro<'tcx>(
1033    item: &hir::Item<'tcx>,
1034    sig: &hir::FnSig<'tcx>,
1035    generics: &hir::Generics<'tcx>,
1036    body_id: hir::BodyId,
1037    name: &mut Symbol,
1038    cx: &mut DocContext<'tcx>,
1039) -> ItemKind {
1040    let attrs = cx.tcx.hir_attrs(item.hir_id());
1041    let macro_kind = attrs.iter().find_map(|a| {
1042        if a.has_name(sym::proc_macro) {
1043            Some(MacroKind::Bang)
1044        } else if a.has_name(sym::proc_macro_derive) {
1045            Some(MacroKind::Derive)
1046        } else if a.has_name(sym::proc_macro_attribute) {
1047            Some(MacroKind::Attr)
1048        } else {
1049            None
1050        }
1051    });
1052    match macro_kind {
1053        Some(kind) => clean_proc_macro(item, name, kind, cx),
1054        None => {
1055            let mut func = clean_function(cx, sig, generics, ParamsSrc::Body(body_id));
1056            clean_fn_decl_legacy_const_generics(&mut func, attrs);
1057            FunctionItem(func)
1058        }
1059    }
1060}
1061
1062/// This is needed to make it more "readable" when documenting functions using
1063/// `rustc_legacy_const_generics`. More information in
1064/// <https://github.com/rust-lang/rust/issues/83167>.
1065fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[hir::Attribute]) {
1066    for meta_item_list in attrs
1067        .iter()
1068        .filter(|a| a.has_name(sym::rustc_legacy_const_generics))
1069        .filter_map(|a| a.meta_item_list())
1070    {
1071        for (pos, literal) in meta_item_list.iter().filter_map(|meta| meta.lit()).enumerate() {
1072            match literal.kind {
1073                ast::LitKind::Int(a, _) => {
1074                    let GenericParamDef { name, kind, .. } = func.generics.params.remove(0);
1075                    if let GenericParamDefKind::Const { ty, .. } = kind {
1076                        func.decl.inputs.insert(
1077                            a.get() as _,
1078                            Parameter { name: Some(name), type_: *ty, is_const: true },
1079                        );
1080                    } else {
1081                        panic!("unexpected non const in position {pos}");
1082                    }
1083                }
1084                _ => panic!("invalid arg index"),
1085            }
1086        }
1087    }
1088}
1089
1090enum ParamsSrc<'tcx> {
1091    Body(hir::BodyId),
1092    Idents(&'tcx [Option<Ident>]),
1093}
1094
1095fn clean_function<'tcx>(
1096    cx: &mut DocContext<'tcx>,
1097    sig: &hir::FnSig<'tcx>,
1098    generics: &hir::Generics<'tcx>,
1099    params: ParamsSrc<'tcx>,
1100) -> Box<Function> {
1101    let (generics, decl) = enter_impl_trait(cx, |cx| {
1102        // NOTE: Generics must be cleaned before params.
1103        let generics = clean_generics(generics, cx);
1104        let params = match params {
1105            ParamsSrc::Body(body_id) => clean_params_via_body(cx, sig.decl.inputs, body_id),
1106            // Let's not perpetuate anon params from Rust 2015; use `_` for them.
1107            ParamsSrc::Idents(idents) => clean_params(cx, sig.decl.inputs, idents, |ident| {
1108                Some(ident.map_or(kw::Underscore, |ident| ident.name))
1109            }),
1110        };
1111        let decl = clean_fn_decl_with_params(cx, sig.decl, Some(&sig.header), params);
1112        (generics, decl)
1113    });
1114    Box::new(Function { decl, generics })
1115}
1116
1117fn clean_params<'tcx>(
1118    cx: &mut DocContext<'tcx>,
1119    types: &[hir::Ty<'tcx>],
1120    idents: &[Option<Ident>],
1121    postprocess: impl Fn(Option<Ident>) -> Option<Symbol>,
1122) -> Vec<Parameter> {
1123    types
1124        .iter()
1125        .enumerate()
1126        .map(|(i, ty)| Parameter {
1127            name: postprocess(idents[i]),
1128            type_: clean_ty(ty, cx),
1129            is_const: false,
1130        })
1131        .collect()
1132}
1133
1134fn clean_params_via_body<'tcx>(
1135    cx: &mut DocContext<'tcx>,
1136    types: &[hir::Ty<'tcx>],
1137    body_id: hir::BodyId,
1138) -> Vec<Parameter> {
1139    types
1140        .iter()
1141        .zip(cx.tcx.hir_body(body_id).params)
1142        .map(|(ty, param)| Parameter {
1143            name: Some(name_from_pat(param.pat)),
1144            type_: clean_ty(ty, cx),
1145            is_const: false,
1146        })
1147        .collect()
1148}
1149
1150fn clean_fn_decl_with_params<'tcx>(
1151    cx: &mut DocContext<'tcx>,
1152    decl: &hir::FnDecl<'tcx>,
1153    header: Option<&hir::FnHeader>,
1154    params: Vec<Parameter>,
1155) -> FnDecl {
1156    let mut output = match decl.output {
1157        hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
1158        hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
1159    };
1160    if let Some(header) = header
1161        && header.is_async()
1162    {
1163        output = output.sugared_async_return_type();
1164    }
1165    FnDecl { inputs: params, output, c_variadic: decl.c_variadic }
1166}
1167
1168fn clean_poly_fn_sig<'tcx>(
1169    cx: &mut DocContext<'tcx>,
1170    did: Option<DefId>,
1171    sig: ty::PolyFnSig<'tcx>,
1172) -> FnDecl {
1173    let mut output = clean_middle_ty(sig.output(), cx, None, None);
1174
1175    // If the return type isn't an `impl Trait`, we can safely assume that this
1176    // function isn't async without needing to execute the query `asyncness` at
1177    // all which gives us a noticeable performance boost.
1178    if let Some(did) = did
1179        && let Type::ImplTrait(_) = output
1180        && cx.tcx.asyncness(did).is_async()
1181    {
1182        output = output.sugared_async_return_type();
1183    }
1184
1185    let mut idents = did.map(|did| cx.tcx.fn_arg_idents(did)).unwrap_or_default().iter().copied();
1186
1187    // If this comes from a fn item, let's not perpetuate anon params from Rust 2015; use `_` for them.
1188    // If this comes from a fn ptr ty, we just keep params unnamed since it's more conventional stylistically.
1189    // Since the param name is not part of the semantic type, these params never bear a name unlike
1190    // in the HIR case, thus we can't peform any fancy fallback logic unlike `clean_bare_fn_ty`.
1191    let fallback = did.map(|_| kw::Underscore);
1192
1193    let params = sig
1194        .inputs()
1195        .iter()
1196        .map(|ty| Parameter {
1197            name: idents.next().flatten().map(|ident| ident.name).or(fallback),
1198            type_: clean_middle_ty(ty.map_bound(|ty| *ty), cx, None, None),
1199            is_const: false,
1200        })
1201        .collect();
1202
1203    FnDecl { inputs: params, output, c_variadic: sig.skip_binder().c_variadic }
1204}
1205
1206fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
1207    let path = clean_path(trait_ref.path, cx);
1208    register_res(cx, path.res);
1209    path
1210}
1211
1212fn clean_poly_trait_ref<'tcx>(
1213    poly_trait_ref: &hir::PolyTraitRef<'tcx>,
1214    cx: &mut DocContext<'tcx>,
1215) -> PolyTrait {
1216    PolyTrait {
1217        trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
1218        generic_params: poly_trait_ref
1219            .bound_generic_params
1220            .iter()
1221            .filter(|p| !is_elided_lifetime(p))
1222            .map(|x| clean_generic_param(cx, None, x))
1223            .collect(),
1224    }
1225}
1226
1227fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
1228    let local_did = trait_item.owner_id.to_def_id();
1229    cx.with_param_env(local_did, |cx| {
1230        let inner = match trait_item.kind {
1231            hir::TraitItemKind::Const(ty, Some(default)) => {
1232                ProvidedAssocConstItem(Box::new(Constant {
1233                    generics: enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx)),
1234                    kind: ConstantKind::Local { def_id: local_did, body: default },
1235                    type_: clean_ty(ty, cx),
1236                }))
1237            }
1238            hir::TraitItemKind::Const(ty, None) => {
1239                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1240                RequiredAssocConstItem(generics, Box::new(clean_ty(ty, cx)))
1241            }
1242            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
1243                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Body(body));
1244                MethodItem(m, None)
1245            }
1246            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(idents)) => {
1247                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Idents(idents));
1248                RequiredMethodItem(m)
1249            }
1250            hir::TraitItemKind::Type(bounds, Some(default)) => {
1251                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1252                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1253                let item_type =
1254                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, default)), cx, None, None);
1255                AssocTypeItem(
1256                    Box::new(TypeAlias {
1257                        type_: clean_ty(default, cx),
1258                        generics,
1259                        inner_type: None,
1260                        item_type: Some(item_type),
1261                    }),
1262                    bounds,
1263                )
1264            }
1265            hir::TraitItemKind::Type(bounds, None) => {
1266                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1267                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1268                RequiredAssocTypeItem(generics, bounds)
1269            }
1270        };
1271        Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
1272    })
1273}
1274
1275pub(crate) fn clean_impl_item<'tcx>(
1276    impl_: &hir::ImplItem<'tcx>,
1277    cx: &mut DocContext<'tcx>,
1278) -> Item {
1279    let local_did = impl_.owner_id.to_def_id();
1280    cx.with_param_env(local_did, |cx| {
1281        let inner = match impl_.kind {
1282            hir::ImplItemKind::Const(ty, expr) => ImplAssocConstItem(Box::new(Constant {
1283                generics: clean_generics(impl_.generics, cx),
1284                kind: ConstantKind::Local { def_id: local_did, body: expr },
1285                type_: clean_ty(ty, cx),
1286            })),
1287            hir::ImplItemKind::Fn(ref sig, body) => {
1288                let m = clean_function(cx, sig, impl_.generics, ParamsSrc::Body(body));
1289                let defaultness = cx.tcx.defaultness(impl_.owner_id);
1290                MethodItem(m, Some(defaultness))
1291            }
1292            hir::ImplItemKind::Type(hir_ty) => {
1293                let type_ = clean_ty(hir_ty, cx);
1294                let generics = clean_generics(impl_.generics, cx);
1295                let item_type =
1296                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
1297                AssocTypeItem(
1298                    Box::new(TypeAlias {
1299                        type_,
1300                        generics,
1301                        inner_type: None,
1302                        item_type: Some(item_type),
1303                    }),
1304                    Vec::new(),
1305                )
1306            }
1307        };
1308
1309        Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
1310    })
1311}
1312
1313pub(crate) fn clean_middle_assoc_item(assoc_item: &ty::AssocItem, cx: &mut DocContext<'_>) -> Item {
1314    let tcx = cx.tcx;
1315    let kind = match assoc_item.kind {
1316        ty::AssocKind::Const { .. } => {
1317            let ty = clean_middle_ty(
1318                ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
1319                cx,
1320                Some(assoc_item.def_id),
1321                None,
1322            );
1323
1324            let mut generics = clean_ty_generics(
1325                cx,
1326                tcx.generics_of(assoc_item.def_id),
1327                tcx.explicit_predicates_of(assoc_item.def_id),
1328            );
1329            simplify::move_bounds_to_generic_parameters(&mut generics);
1330
1331            match assoc_item.container {
1332                ty::AssocItemContainer::Impl => ImplAssocConstItem(Box::new(Constant {
1333                    generics,
1334                    kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1335                    type_: ty,
1336                })),
1337                ty::AssocItemContainer::Trait => {
1338                    if tcx.defaultness(assoc_item.def_id).has_value() {
1339                        ProvidedAssocConstItem(Box::new(Constant {
1340                            generics,
1341                            kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1342                            type_: ty,
1343                        }))
1344                    } else {
1345                        RequiredAssocConstItem(generics, Box::new(ty))
1346                    }
1347                }
1348            }
1349        }
1350        ty::AssocKind::Fn { has_self, .. } => {
1351            let mut item = inline::build_function(cx, assoc_item.def_id);
1352
1353            if has_self {
1354                let self_ty = match assoc_item.container {
1355                    ty::AssocItemContainer::Impl => {
1356                        tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
1357                    }
1358                    ty::AssocItemContainer::Trait => tcx.types.self_param,
1359                };
1360                let self_param_ty =
1361                    tcx.fn_sig(assoc_item.def_id).instantiate_identity().input(0).skip_binder();
1362                if self_param_ty == self_ty {
1363                    item.decl.inputs[0].type_ = SelfTy;
1364                } else if let ty::Ref(_, ty, _) = *self_param_ty.kind()
1365                    && ty == self_ty
1366                {
1367                    match item.decl.inputs[0].type_ {
1368                        BorrowedRef { ref mut type_, .. } => **type_ = SelfTy,
1369                        _ => unreachable!(),
1370                    }
1371                }
1372            }
1373
1374            let provided = match assoc_item.container {
1375                ty::AssocItemContainer::Impl => true,
1376                ty::AssocItemContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1377            };
1378            if provided {
1379                let defaultness = match assoc_item.container {
1380                    ty::AssocItemContainer::Impl => Some(assoc_item.defaultness(tcx)),
1381                    ty::AssocItemContainer::Trait => None,
1382                };
1383                MethodItem(item, defaultness)
1384            } else {
1385                RequiredMethodItem(item)
1386            }
1387        }
1388        ty::AssocKind::Type { .. } => {
1389            let my_name = assoc_item.name();
1390
1391            fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
1392                match (&param.kind, arg) {
1393                    (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
1394                        if *ty == param.name =>
1395                    {
1396                        true
1397                    }
1398                    (GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
1399                        if *lt == param.name =>
1400                    {
1401                        true
1402                    }
1403                    (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &**c {
1404                        ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
1405                        _ => false,
1406                    },
1407                    _ => false,
1408                }
1409            }
1410
1411            let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
1412            if let ty::AssocItemContainer::Trait = assoc_item.container {
1413                let bounds = tcx.explicit_item_bounds(assoc_item.def_id).iter_identity_copied();
1414                predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
1415            }
1416            let mut generics = clean_ty_generics(
1417                cx,
1418                tcx.generics_of(assoc_item.def_id),
1419                ty::GenericPredicates { parent: None, predicates },
1420            );
1421            simplify::move_bounds_to_generic_parameters(&mut generics);
1422
1423            if let ty::AssocItemContainer::Trait = assoc_item.container {
1424                // Move bounds that are (likely) directly attached to the associated type
1425                // from the where-clause to the associated type.
1426                // There is no guarantee that this is what the user actually wrote but we have
1427                // no way of knowing.
1428                let mut bounds: Vec<GenericBound> = Vec::new();
1429                generics.where_predicates.retain_mut(|pred| match *pred {
1430                    WherePredicate::BoundPredicate {
1431                        ty:
1432                            QPath(box QPathData {
1433                                ref assoc,
1434                                ref self_type,
1435                                trait_: Some(ref trait_),
1436                                ..
1437                            }),
1438                        bounds: ref mut pred_bounds,
1439                        ..
1440                    } => {
1441                        if assoc.name != my_name {
1442                            return true;
1443                        }
1444                        if trait_.def_id() != assoc_item.container_id(tcx) {
1445                            return true;
1446                        }
1447                        if *self_type != SelfTy {
1448                            return true;
1449                        }
1450                        match &assoc.args {
1451                            GenericArgs::AngleBracketed { args, constraints } => {
1452                                if !constraints.is_empty()
1453                                    || generics
1454                                        .params
1455                                        .iter()
1456                                        .zip(args.iter())
1457                                        .any(|(param, arg)| !param_eq_arg(param, arg))
1458                                {
1459                                    return true;
1460                                }
1461                            }
1462                            GenericArgs::Parenthesized { .. } => {
1463                                // The only time this happens is if we're inside the rustdoc for Fn(),
1464                                // which only has one associated type, which is not a GAT, so whatever.
1465                            }
1466                            GenericArgs::ReturnTypeNotation => {
1467                                // Never move these.
1468                            }
1469                        }
1470                        bounds.extend(mem::take(pred_bounds));
1471                        false
1472                    }
1473                    _ => true,
1474                });
1475                // Our Sized/?Sized bound didn't get handled when creating the generics
1476                // because we didn't actually get our whole set of bounds until just now
1477                // (some of them may have come from the trait). If we do have a sized
1478                // bound, we remove it, and if we don't then we add the `?Sized` bound
1479                // at the end.
1480                match bounds.iter().position(|b| b.is_sized_bound(cx)) {
1481                    Some(i) => {
1482                        bounds.remove(i);
1483                    }
1484                    None => bounds.push(GenericBound::maybe_sized(cx)),
1485                }
1486
1487                if tcx.defaultness(assoc_item.def_id).has_value() {
1488                    AssocTypeItem(
1489                        Box::new(TypeAlias {
1490                            type_: clean_middle_ty(
1491                                ty::Binder::dummy(
1492                                    tcx.type_of(assoc_item.def_id).instantiate_identity(),
1493                                ),
1494                                cx,
1495                                Some(assoc_item.def_id),
1496                                None,
1497                            ),
1498                            generics,
1499                            inner_type: None,
1500                            item_type: None,
1501                        }),
1502                        bounds,
1503                    )
1504                } else {
1505                    RequiredAssocTypeItem(generics, bounds)
1506                }
1507            } else {
1508                AssocTypeItem(
1509                    Box::new(TypeAlias {
1510                        type_: clean_middle_ty(
1511                            ty::Binder::dummy(
1512                                tcx.type_of(assoc_item.def_id).instantiate_identity(),
1513                            ),
1514                            cx,
1515                            Some(assoc_item.def_id),
1516                            None,
1517                        ),
1518                        generics,
1519                        inner_type: None,
1520                        item_type: None,
1521                    }),
1522                    // Associated types inside trait or inherent impls are not allowed to have
1523                    // item bounds. Thus we don't attempt to move any bounds there.
1524                    Vec::new(),
1525                )
1526            }
1527        }
1528    };
1529
1530    Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name()), kind, cx)
1531}
1532
1533fn first_non_private_clean_path<'tcx>(
1534    cx: &mut DocContext<'tcx>,
1535    path: &hir::Path<'tcx>,
1536    new_path_segments: &'tcx [hir::PathSegment<'tcx>],
1537    new_path_span: rustc_span::Span,
1538) -> Path {
1539    let new_hir_path =
1540        hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
1541    let mut new_clean_path = clean_path(&new_hir_path, cx);
1542    // In here we need to play with the path data one last time to provide it the
1543    // missing `args` and `res` of the final `Path` we get, which, since it comes
1544    // from a re-export, doesn't have the generics that were originally there, so
1545    // we add them by hand.
1546    if let Some(path_last) = path.segments.last().as_ref()
1547        && let Some(new_path_last) = new_clean_path.segments[..].last_mut()
1548        && let Some(path_last_args) = path_last.args.as_ref()
1549        && path_last.args.is_some()
1550    {
1551        assert!(new_path_last.args.is_empty());
1552        new_path_last.args = clean_generic_args(path_last_args, cx);
1553    }
1554    new_clean_path
1555}
1556
1557/// The goal of this function is to return the first `Path` which is not private (ie not private
1558/// or `doc(hidden)`). If it's not possible, it'll return the "end type".
1559///
1560/// If the path is not a re-export or is public, it'll return `None`.
1561fn first_non_private<'tcx>(
1562    cx: &mut DocContext<'tcx>,
1563    hir_id: hir::HirId,
1564    path: &hir::Path<'tcx>,
1565) -> Option<Path> {
1566    let target_def_id = path.res.opt_def_id()?;
1567    let (parent_def_id, ident) = match &path.segments {
1568        [] => return None,
1569        // Relative paths are available in the same scope as the owner.
1570        [leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
1571        // So are self paths.
1572        [parent, leaf] if parent.ident.name == kw::SelfLower => {
1573            (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
1574        }
1575        // Crate paths are not. We start from the crate root.
1576        [parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
1577            (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1578        }
1579        [parent, leaf] if parent.ident.name == kw::Super => {
1580            let parent_mod = cx.tcx.parent_module(hir_id);
1581            if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
1582                (super_parent, leaf.ident)
1583            } else {
1584                // If we can't find the parent of the parent, then the parent is already the crate.
1585                (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1586            }
1587        }
1588        // Absolute paths are not. We start from the parent of the item.
1589        [.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
1590    };
1591    // First we try to get the `DefId` of the item.
1592    for child in
1593        cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
1594    {
1595        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
1596            continue;
1597        }
1598
1599        if let Some(def_id) = child.res.opt_def_id()
1600            && target_def_id == def_id
1601        {
1602            let mut last_path_res = None;
1603            'reexps: for reexp in child.reexport_chain.iter() {
1604                if let Some(use_def_id) = reexp.id()
1605                    && let Some(local_use_def_id) = use_def_id.as_local()
1606                    && let hir::Node::Item(item) = cx.tcx.hir_node_by_def_id(local_use_def_id)
1607                    && let hir::ItemKind::Use(path, hir::UseKind::Single(_)) = item.kind
1608                {
1609                    for res in &path.res {
1610                        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
1611                            continue;
1612                        }
1613                        if (cx.render_options.document_hidden ||
1614                            !cx.tcx.is_doc_hidden(use_def_id)) &&
1615                            // We never check for "cx.render_options.document_private"
1616                            // because if a re-export is not fully public, it's never
1617                            // documented.
1618                            cx.tcx.local_visibility(local_use_def_id).is_public()
1619                        {
1620                            break 'reexps;
1621                        }
1622                        last_path_res = Some((path, res));
1623                        continue 'reexps;
1624                    }
1625                }
1626            }
1627            if !child.reexport_chain.is_empty() {
1628                // So in here, we use the data we gathered from iterating the reexports. If
1629                // `last_path_res` is set, it can mean two things:
1630                //
1631                // 1. We found a public reexport.
1632                // 2. We didn't find a public reexport so it's the "end type" path.
1633                if let Some((new_path, _)) = last_path_res {
1634                    return Some(first_non_private_clean_path(
1635                        cx,
1636                        path,
1637                        new_path.segments,
1638                        new_path.span,
1639                    ));
1640                }
1641                // If `last_path_res` is `None`, it can mean two things:
1642                //
1643                // 1. The re-export is public, no need to change anything, just use the path as is.
1644                // 2. Nothing was found, so let's just return the original path.
1645                return None;
1646            }
1647        }
1648    }
1649    None
1650}
1651
1652fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1653    let hir::Ty { hir_id, span, ref kind } = *hir_ty;
1654    let hir::TyKind::Path(qpath) = kind else { unreachable!() };
1655
1656    match qpath {
1657        hir::QPath::Resolved(None, path) => {
1658            if let Res::Def(DefKind::TyParam, did) = path.res {
1659                if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
1660                    return new_ty;
1661                }
1662                if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
1663                    return ImplTrait(bounds);
1664                }
1665            }
1666
1667            if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
1668                expanded
1669            } else {
1670                // First we check if it's a private re-export.
1671                let path = if let Some(path) = first_non_private(cx, hir_id, path) {
1672                    path
1673                } else {
1674                    clean_path(path, cx)
1675                };
1676                resolve_type(cx, path)
1677            }
1678        }
1679        hir::QPath::Resolved(Some(qself), p) => {
1680            // Try to normalize `<X as Y>::T` to a type
1681            let ty = lower_ty(cx.tcx, hir_ty);
1682            // `hir_to_ty` can return projection types with escaping vars for GATs, e.g. `<() as Trait>::Gat<'_>`
1683            if !ty.has_escaping_bound_vars()
1684                && let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
1685            {
1686                return clean_middle_ty(normalized_value, cx, None, None);
1687            }
1688
1689            let trait_segments = &p.segments[..p.segments.len() - 1];
1690            let trait_def = cx.tcx.associated_item(p.res.def_id()).container_id(cx.tcx);
1691            let trait_ = self::Path {
1692                res: Res::Def(DefKind::Trait, trait_def),
1693                segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
1694            };
1695            register_res(cx, trait_.res);
1696            let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
1697            let self_type = clean_ty(qself, cx);
1698            let should_show_cast = compute_should_show_cast(Some(self_def_id), &trait_, &self_type);
1699            Type::QPath(Box::new(QPathData {
1700                assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
1701                should_show_cast,
1702                self_type,
1703                trait_: Some(trait_),
1704            }))
1705        }
1706        hir::QPath::TypeRelative(qself, segment) => {
1707            let ty = lower_ty(cx.tcx, hir_ty);
1708            let self_type = clean_ty(qself, cx);
1709
1710            let (trait_, should_show_cast) = match ty.kind() {
1711                ty::Alias(ty::Projection, proj) => {
1712                    let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
1713                    let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
1714                    register_res(cx, trait_.res);
1715                    let self_def_id = res.opt_def_id();
1716                    let should_show_cast =
1717                        compute_should_show_cast(self_def_id, &trait_, &self_type);
1718
1719                    (Some(trait_), should_show_cast)
1720                }
1721                ty::Alias(ty::Inherent, _) => (None, false),
1722                // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
1723                ty::Error(_) => return Type::Infer,
1724                _ => bug!("clean: expected associated type, found `{ty:?}`"),
1725            };
1726
1727            Type::QPath(Box::new(QPathData {
1728                assoc: clean_path_segment(segment, cx),
1729                should_show_cast,
1730                self_type,
1731                trait_,
1732            }))
1733        }
1734        hir::QPath::LangItem(..) => bug!("clean: requiring documentation of lang item"),
1735    }
1736}
1737
1738fn maybe_expand_private_type_alias<'tcx>(
1739    cx: &mut DocContext<'tcx>,
1740    path: &hir::Path<'tcx>,
1741) -> Option<Type> {
1742    let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
1743    // Substitute private type aliases
1744    let def_id = def_id.as_local()?;
1745    let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
1746        && !cx.current_type_aliases.contains_key(&def_id.to_def_id())
1747    {
1748        &cx.tcx.hir_expect_item(def_id).kind
1749    } else {
1750        return None;
1751    };
1752    let hir::ItemKind::TyAlias(_, ty, generics) = alias else { return None };
1753
1754    let final_seg = &path.segments.last().expect("segments were empty");
1755    let mut args = DefIdMap::default();
1756    let generic_args = final_seg.args();
1757
1758    let mut indices: hir::GenericParamCount = Default::default();
1759    for param in generics.params.iter() {
1760        match param.kind {
1761            hir::GenericParamKind::Lifetime { .. } => {
1762                let mut j = 0;
1763                let lifetime = generic_args.args.iter().find_map(|arg| match arg {
1764                    hir::GenericArg::Lifetime(lt) => {
1765                        if indices.lifetimes == j {
1766                            return Some(lt);
1767                        }
1768                        j += 1;
1769                        None
1770                    }
1771                    _ => None,
1772                });
1773                if let Some(lt) = lifetime {
1774                    let lt = if !lt.is_anonymous() {
1775                        clean_lifetime(lt, cx)
1776                    } else {
1777                        Lifetime::elided()
1778                    };
1779                    args.insert(param.def_id.to_def_id(), GenericArg::Lifetime(lt));
1780                }
1781                indices.lifetimes += 1;
1782            }
1783            hir::GenericParamKind::Type { ref default, .. } => {
1784                let mut j = 0;
1785                let type_ = generic_args.args.iter().find_map(|arg| match arg {
1786                    hir::GenericArg::Type(ty) => {
1787                        if indices.types == j {
1788                            return Some(ty.as_unambig_ty());
1789                        }
1790                        j += 1;
1791                        None
1792                    }
1793                    _ => None,
1794                });
1795                if let Some(ty) = type_.or(*default) {
1796                    args.insert(param.def_id.to_def_id(), GenericArg::Type(clean_ty(ty, cx)));
1797                }
1798                indices.types += 1;
1799            }
1800            // FIXME(#82852): Instantiate const parameters.
1801            hir::GenericParamKind::Const { .. } => {}
1802        }
1803    }
1804
1805    Some(cx.enter_alias(args, def_id.to_def_id(), |cx| {
1806        cx.with_param_env(def_id.to_def_id(), |cx| clean_ty(ty, cx))
1807    }))
1808}
1809
1810pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1811    use rustc_hir::*;
1812
1813    match ty.kind {
1814        TyKind::Never => Primitive(PrimitiveType::Never),
1815        TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
1816        TyKind::Ref(l, ref m) => {
1817            let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(l, cx)) };
1818            BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
1819        }
1820        TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
1821        TyKind::Pat(ty, pat) => Type::Pat(Box::new(clean_ty(ty, cx)), format!("{pat:?}").into()),
1822        TyKind::Array(ty, const_arg) => {
1823            // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
1824            // as we currently do not supply the parent generics to anonymous constants
1825            // but do allow `ConstKind::Param`.
1826            //
1827            // `const_eval_poly` tries to first substitute generic parameters which
1828            // results in an ICE while manually constructing the constant and using `eval`
1829            // does nothing for `ConstKind::Param`.
1830            let length = match const_arg.kind {
1831                hir::ConstArgKind::Infer(..) => "_".to_string(),
1832                hir::ConstArgKind::Anon(hir::AnonConst { def_id, .. }) => {
1833                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1834                    let typing_env = ty::TypingEnv::post_analysis(cx.tcx, *def_id);
1835                    let ct = cx.tcx.normalize_erasing_regions(typing_env, ct);
1836                    print_const(cx, ct)
1837                }
1838                hir::ConstArgKind::Path(..) => {
1839                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1840                    print_const(cx, ct)
1841                }
1842            };
1843            Array(Box::new(clean_ty(ty, cx)), length.into())
1844        }
1845        TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
1846        TyKind::OpaqueDef(ty) => {
1847            ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
1848        }
1849        TyKind::Path(_) => clean_qpath(ty, cx),
1850        TyKind::TraitObject(bounds, lifetime) => {
1851            let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
1852            let lifetime = if !lifetime.is_elided() {
1853                Some(clean_lifetime(lifetime.pointer(), cx))
1854            } else {
1855                None
1856            };
1857            DynTrait(bounds, lifetime)
1858        }
1859        TyKind::BareFn(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
1860        TyKind::UnsafeBinder(unsafe_binder_ty) => {
1861            UnsafeBinder(Box::new(clean_unsafe_binder_ty(unsafe_binder_ty, cx)))
1862        }
1863        // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
1864        TyKind::Infer(())
1865        | TyKind::Err(_)
1866        | TyKind::Typeof(..)
1867        | TyKind::InferDelegation(..)
1868        | TyKind::TraitAscription(_) => Infer,
1869    }
1870}
1871
1872/// Returns `None` if the type could not be normalized
1873fn normalize<'tcx>(
1874    cx: &DocContext<'tcx>,
1875    ty: ty::Binder<'tcx, Ty<'tcx>>,
1876) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
1877    // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
1878    if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
1879        return None;
1880    }
1881
1882    use rustc_middle::traits::ObligationCause;
1883    use rustc_trait_selection::infer::TyCtxtInferExt;
1884    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
1885
1886    // Try to normalize `<X as Y>::T` to a type
1887    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1888    let normalized = infcx
1889        .at(&ObligationCause::dummy(), cx.param_env)
1890        .query_normalize(ty)
1891        .map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
1892    match normalized {
1893        Ok(normalized_value) => {
1894            debug!("normalized {ty:?} to {normalized_value:?}");
1895            Some(normalized_value)
1896        }
1897        Err(err) => {
1898            debug!("failed to normalize {ty:?}: {err:?}");
1899            None
1900        }
1901    }
1902}
1903
1904fn clean_trait_object_lifetime_bound<'tcx>(
1905    region: ty::Region<'tcx>,
1906    container: Option<ContainerTy<'_, 'tcx>>,
1907    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1908    tcx: TyCtxt<'tcx>,
1909) -> Option<Lifetime> {
1910    if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
1911        return None;
1912    }
1913
1914    // Since there is a semantic difference between an implicitly elided (i.e. "defaulted") object
1915    // lifetime and an explicitly elided object lifetime (`'_`), we intentionally don't hide the
1916    // latter contrary to `clean_middle_region`.
1917    match region.kind() {
1918        ty::ReStatic => Some(Lifetime::statik()),
1919        ty::ReEarlyParam(region) => Some(Lifetime(region.name)),
1920        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(_, name), .. }) => {
1921            Some(Lifetime(name))
1922        }
1923        ty::ReBound(..)
1924        | ty::ReLateParam(_)
1925        | ty::ReVar(_)
1926        | ty::RePlaceholder(_)
1927        | ty::ReErased
1928        | ty::ReError(_) => None,
1929    }
1930}
1931
1932fn can_elide_trait_object_lifetime_bound<'tcx>(
1933    region: ty::Region<'tcx>,
1934    container: Option<ContainerTy<'_, 'tcx>>,
1935    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1936    tcx: TyCtxt<'tcx>,
1937) -> bool {
1938    // Below we quote extracts from https://doc.rust-lang.org/stable/reference/lifetime-elision.html#default-trait-object-lifetimes
1939
1940    // > If the trait object is used as a type argument of a generic type then the containing type is
1941    // > first used to try to infer a bound.
1942    let default = container
1943        .map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
1944
1945    // > If there is a unique bound from the containing type then that is the default
1946    // If there is a default object lifetime and the given region is lexically equal to it, elide it.
1947    match default {
1948        ObjectLifetimeDefault::Static => return region.kind() == ty::ReStatic,
1949        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1950        ObjectLifetimeDefault::Arg(default) => return region.get_name() == default.get_name(),
1951        // > If there is more than one bound from the containing type then an explicit bound must be specified
1952        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1953        // Don't elide the lifetime.
1954        ObjectLifetimeDefault::Ambiguous => return false,
1955        // There is no meaningful bound. Further processing is needed...
1956        ObjectLifetimeDefault::Empty => {}
1957    }
1958
1959    // > If neither of those rules apply, then the bounds on the trait are used:
1960    match *object_region_bounds(tcx, preds) {
1961        // > If the trait has no lifetime bounds, then the lifetime is inferred in expressions
1962        // > and is 'static outside of expressions.
1963        // FIXME: If we are in an expression context (i.e. fn bodies and const exprs) then the default is
1964        // `'_` and not `'static`. Only if we are in a non-expression one, the default is `'static`.
1965        // Note however that at the time of this writing it should be fine to disregard this subtlety
1966        // as we neither render const exprs faithfully anyway (hiding them in some places or using `_` instead)
1967        // nor show the contents of fn bodies.
1968        [] => region.kind() == ty::ReStatic,
1969        // > If the trait is defined with a single lifetime bound then that bound is used.
1970        // > If 'static is used for any lifetime bound then 'static is used.
1971        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1972        [object_region] => object_region.get_name() == region.get_name(),
1973        // There are several distinct trait regions and none are `'static`.
1974        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1975        // Don't elide the lifetime.
1976        _ => false,
1977    }
1978}
1979
1980#[derive(Debug)]
1981pub(crate) enum ContainerTy<'a, 'tcx> {
1982    Ref(ty::Region<'tcx>),
1983    Regular {
1984        ty: DefId,
1985        /// The arguments *have* to contain an arg for the self type if the corresponding generics
1986        /// contain a self type.
1987        args: ty::Binder<'tcx, &'a [ty::GenericArg<'tcx>]>,
1988        arg: usize,
1989    },
1990}
1991
1992impl<'tcx> ContainerTy<'_, 'tcx> {
1993    fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
1994        match self {
1995            Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
1996            Self::Regular { ty: container, args, arg: index } => {
1997                let (DefKind::Struct
1998                | DefKind::Union
1999                | DefKind::Enum
2000                | DefKind::TyAlias
2001                | DefKind::Trait) = tcx.def_kind(container)
2002                else {
2003                    return ObjectLifetimeDefault::Empty;
2004                };
2005
2006                let generics = tcx.generics_of(container);
2007                debug_assert_eq!(generics.parent_count, 0);
2008
2009                let param = generics.own_params[index].def_id;
2010                let default = tcx.object_lifetime_default(param);
2011                match default {
2012                    rbv::ObjectLifetimeDefault::Param(lifetime) => {
2013                        // The index is relative to the parent generics but since we don't have any,
2014                        // we don't need to translate it.
2015                        let index = generics.param_def_id_to_index[&lifetime];
2016                        let arg = args.skip_binder()[index as usize].expect_region();
2017                        ObjectLifetimeDefault::Arg(arg)
2018                    }
2019                    rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
2020                    rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
2021                    rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
2022                }
2023            }
2024        }
2025    }
2026}
2027
2028#[derive(Debug, Clone, Copy)]
2029pub(crate) enum ObjectLifetimeDefault<'tcx> {
2030    Empty,
2031    Static,
2032    Ambiguous,
2033    Arg(ty::Region<'tcx>),
2034}
2035
2036#[instrument(level = "trace", skip(cx), ret)]
2037pub(crate) fn clean_middle_ty<'tcx>(
2038    bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
2039    cx: &mut DocContext<'tcx>,
2040    parent_def_id: Option<DefId>,
2041    container: Option<ContainerTy<'_, 'tcx>>,
2042) -> Type {
2043    let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
2044    match *bound_ty.skip_binder().kind() {
2045        ty::Never => Primitive(PrimitiveType::Never),
2046        ty::Bool => Primitive(PrimitiveType::Bool),
2047        ty::Char => Primitive(PrimitiveType::Char),
2048        ty::Int(int_ty) => Primitive(int_ty.into()),
2049        ty::Uint(uint_ty) => Primitive(uint_ty.into()),
2050        ty::Float(float_ty) => Primitive(float_ty.into()),
2051        ty::Str => Primitive(PrimitiveType::Str),
2052        ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
2053        ty::Pat(ty, pat) => Type::Pat(
2054            Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)),
2055            format!("{pat:?}").into_boxed_str(),
2056        ),
2057        ty::Array(ty, n) => {
2058            let n = cx.tcx.normalize_erasing_regions(cx.typing_env(), n);
2059            let n = print_const(cx, n);
2060            Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
2061        }
2062        ty::RawPtr(ty, mutbl) => {
2063            RawPointer(mutbl, Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)))
2064        }
2065        ty::Ref(r, ty, mutbl) => BorrowedRef {
2066            lifetime: clean_middle_region(r),
2067            mutability: mutbl,
2068            type_: Box::new(clean_middle_ty(
2069                bound_ty.rebind(ty),
2070                cx,
2071                None,
2072                Some(ContainerTy::Ref(r)),
2073            )),
2074        },
2075        ty::FnDef(..) | ty::FnPtr(..) => {
2076            // FIXME: should we merge the outer and inner binders somehow?
2077            let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
2078            let decl = clean_poly_fn_sig(cx, None, sig);
2079            let generic_params = clean_bound_vars(sig.bound_vars());
2080
2081            BareFunction(Box::new(BareFunctionDecl {
2082                safety: sig.safety(),
2083                generic_params,
2084                decl,
2085                abi: sig.abi(),
2086            }))
2087        }
2088        ty::UnsafeBinder(inner) => {
2089            let generic_params = clean_bound_vars(inner.bound_vars());
2090            let ty = clean_middle_ty(inner.into(), cx, None, None);
2091            UnsafeBinder(Box::new(UnsafeBinderTy { generic_params, ty }))
2092        }
2093        ty::Adt(def, args) => {
2094            let did = def.did();
2095            let kind = match def.adt_kind() {
2096                AdtKind::Struct => ItemType::Struct,
2097                AdtKind::Union => ItemType::Union,
2098                AdtKind::Enum => ItemType::Enum,
2099            };
2100            inline::record_extern_fqn(cx, did, kind);
2101            let path = clean_middle_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
2102            Type::Path { path }
2103        }
2104        ty::Foreign(did) => {
2105            inline::record_extern_fqn(cx, did, ItemType::ForeignType);
2106            let path = clean_middle_path(
2107                cx,
2108                did,
2109                false,
2110                ThinVec::new(),
2111                ty::Binder::dummy(ty::GenericArgs::empty()),
2112            );
2113            Type::Path { path }
2114        }
2115        ty::Dynamic(obj, ref reg, _) => {
2116            // HACK: pick the first `did` as the `did` of the trait object. Someone
2117            // might want to implement "native" support for marker-trait-only
2118            // trait objects.
2119            let mut dids = obj.auto_traits();
2120            let did = obj
2121                .principal_def_id()
2122                .or_else(|| dids.next())
2123                .unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
2124            let args = match obj.principal() {
2125                Some(principal) => principal.map_bound(|p| p.args),
2126                // marker traits have no args.
2127                _ => ty::Binder::dummy(ty::GenericArgs::empty()),
2128            };
2129
2130            inline::record_extern_fqn(cx, did, ItemType::Trait);
2131
2132            let lifetime = clean_trait_object_lifetime_bound(*reg, container, obj, cx.tcx);
2133
2134            let mut bounds = dids
2135                .map(|did| {
2136                    let empty = ty::Binder::dummy(ty::GenericArgs::empty());
2137                    let path = clean_middle_path(cx, did, false, ThinVec::new(), empty);
2138                    inline::record_extern_fqn(cx, did, ItemType::Trait);
2139                    PolyTrait { trait_: path, generic_params: Vec::new() }
2140                })
2141                .collect::<Vec<_>>();
2142
2143            let constraints = obj
2144                .projection_bounds()
2145                .map(|pb| AssocItemConstraint {
2146                    assoc: projection_to_path_segment(
2147                        pb.map_bound(|pb| {
2148                            pb
2149                                // HACK(compiler-errors): Doesn't actually matter what self
2150                                // type we put here, because we're only using the GAT's args.
2151                                .with_self_ty(cx.tcx, cx.tcx.types.self_param)
2152                                .projection_term
2153                                // FIXME: This needs to be made resilient for `AliasTerm`s
2154                                // that are associated consts.
2155                                .expect_ty(cx.tcx)
2156                        }),
2157                        cx,
2158                    ),
2159                    kind: AssocItemConstraintKind::Equality {
2160                        term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
2161                    },
2162                })
2163                .collect();
2164
2165            let late_bound_regions: FxIndexSet<_> = obj
2166                .iter()
2167                .flat_map(|pred| pred.bound_vars())
2168                .filter_map(|var| match var {
2169                    ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id, name))
2170                        if name != kw::UnderscoreLifetime =>
2171                    {
2172                        Some(GenericParamDef::lifetime(def_id, name))
2173                    }
2174                    _ => None,
2175                })
2176                .collect();
2177            let late_bound_regions = late_bound_regions.into_iter().collect();
2178
2179            let path = clean_middle_path(cx, did, false, constraints, args);
2180            bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
2181
2182            DynTrait(bounds, lifetime)
2183        }
2184        ty::Tuple(t) => {
2185            Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
2186        }
2187
2188        ty::Alias(ty::Projection, data) => {
2189            clean_projection(bound_ty.rebind(data), cx, parent_def_id)
2190        }
2191
2192        ty::Alias(ty::Inherent, alias_ty) => {
2193            let def_id = alias_ty.def_id;
2194            let alias_ty = bound_ty.rebind(alias_ty);
2195            let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
2196
2197            Type::QPath(Box::new(QPathData {
2198                assoc: PathSegment {
2199                    name: cx.tcx.associated_item(def_id).name(),
2200                    args: GenericArgs::AngleBracketed {
2201                        args: clean_middle_generic_args(
2202                            cx,
2203                            alias_ty.map_bound(|ty| ty.args.as_slice()),
2204                            true,
2205                            def_id,
2206                        ),
2207                        constraints: Default::default(),
2208                    },
2209                },
2210                should_show_cast: false,
2211                self_type,
2212                trait_: None,
2213            }))
2214        }
2215
2216        ty::Alias(ty::Free, data) => {
2217            if cx.tcx.features().lazy_type_alias() {
2218                // Free type alias `data` represents the `type X` in `type X = Y`. If we need `Y`,
2219                // we need to use `type_of`.
2220                let path = clean_middle_path(
2221                    cx,
2222                    data.def_id,
2223                    false,
2224                    ThinVec::new(),
2225                    bound_ty.rebind(data.args),
2226                );
2227                Type::Path { path }
2228            } else {
2229                let ty = cx.tcx.type_of(data.def_id).instantiate(cx.tcx, data.args);
2230                clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
2231            }
2232        }
2233
2234        ty::Param(ref p) => {
2235            if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
2236                ImplTrait(bounds)
2237            } else if p.name == kw::SelfUpper {
2238                SelfTy
2239            } else {
2240                Generic(p.name)
2241            }
2242        }
2243
2244        ty::Bound(_, ref ty) => match ty.kind {
2245            ty::BoundTyKind::Param(_, name) => Generic(name),
2246            ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
2247        },
2248
2249        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2250            // If it's already in the same alias, don't get an infinite loop.
2251            if cx.current_type_aliases.contains_key(&def_id) {
2252                let path =
2253                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2254                Type::Path { path }
2255            } else {
2256                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2257                // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
2258                // by looking up the bounds associated with the def_id.
2259                let ty = clean_middle_opaque_bounds(cx, def_id, args);
2260                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2261                    *count -= 1;
2262                    if *count == 0 {
2263                        cx.current_type_aliases.remove(&def_id);
2264                    }
2265                }
2266                ty
2267            }
2268        }
2269
2270        ty::Closure(..) => panic!("Closure"),
2271        ty::CoroutineClosure(..) => panic!("CoroutineClosure"),
2272        ty::Coroutine(..) => panic!("Coroutine"),
2273        ty::Placeholder(..) => panic!("Placeholder"),
2274        ty::CoroutineWitness(..) => panic!("CoroutineWitness"),
2275        ty::Infer(..) => panic!("Infer"),
2276
2277        ty::Error(_) => FatalError.raise(),
2278    }
2279}
2280
2281fn clean_middle_opaque_bounds<'tcx>(
2282    cx: &mut DocContext<'tcx>,
2283    impl_trait_def_id: DefId,
2284    args: ty::GenericArgsRef<'tcx>,
2285) -> Type {
2286    let mut has_sized = false;
2287
2288    let bounds: Vec<_> = cx
2289        .tcx
2290        .explicit_item_bounds(impl_trait_def_id)
2291        .iter_instantiated_copied(cx.tcx, args)
2292        .collect();
2293
2294    let mut bounds = bounds
2295        .iter()
2296        .filter_map(|(bound, _)| {
2297            let bound_predicate = bound.kind();
2298            let trait_ref = match bound_predicate.skip_binder() {
2299                ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
2300                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
2301                    return clean_middle_region(reg).map(GenericBound::Outlives);
2302                }
2303                _ => return None,
2304            };
2305
2306            if let Some(sized) = cx.tcx.lang_items().sized_trait()
2307                && trait_ref.def_id() == sized
2308            {
2309                has_sized = true;
2310                return None;
2311            }
2312
2313            let bindings: ThinVec<_> = bounds
2314                .iter()
2315                .filter_map(|(bound, _)| {
2316                    if let ty::ClauseKind::Projection(proj) = bound.kind().skip_binder()
2317                        && proj.projection_term.trait_ref(cx.tcx) == trait_ref.skip_binder()
2318                    {
2319                        return Some(AssocItemConstraint {
2320                            assoc: projection_to_path_segment(
2321                                // FIXME: This needs to be made resilient for `AliasTerm`s that
2322                                // are associated consts.
2323                                bound.kind().rebind(proj.projection_term.expect_ty(cx.tcx)),
2324                                cx,
2325                            ),
2326                            kind: AssocItemConstraintKind::Equality {
2327                                term: clean_middle_term(bound.kind().rebind(proj.term), cx),
2328                            },
2329                        });
2330                    }
2331                    None
2332                })
2333                .collect();
2334
2335            Some(clean_poly_trait_ref_with_constraints(cx, trait_ref, bindings))
2336        })
2337        .collect::<Vec<_>>();
2338
2339    if !has_sized {
2340        bounds.push(GenericBound::maybe_sized(cx));
2341    }
2342
2343    // Move trait bounds to the front.
2344    bounds.sort_by_key(|b| !b.is_trait_bound());
2345
2346    // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
2347    // Since all potential trait bounds are at the front we can just check the first bound.
2348    if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
2349        bounds.insert(0, GenericBound::sized(cx));
2350    }
2351
2352    if let Some(args) = cx.tcx.rendered_precise_capturing_args(impl_trait_def_id) {
2353        bounds.push(GenericBound::Use(
2354            args.iter()
2355                .map(|arg| match arg {
2356                    hir::PreciseCapturingArgKind::Lifetime(lt) => {
2357                        PreciseCapturingArg::Lifetime(Lifetime(*lt))
2358                    }
2359                    hir::PreciseCapturingArgKind::Param(param) => {
2360                        PreciseCapturingArg::Param(*param)
2361                    }
2362                })
2363                .collect(),
2364        ));
2365    }
2366
2367    ImplTrait(bounds)
2368}
2369
2370pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2371    clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
2372}
2373
2374pub(crate) fn clean_middle_field(field: &ty::FieldDef, cx: &mut DocContext<'_>) -> Item {
2375    clean_field_with_def_id(
2376        field.did,
2377        field.name,
2378        clean_middle_ty(
2379            ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
2380            cx,
2381            Some(field.did),
2382            None,
2383        ),
2384        cx,
2385    )
2386}
2387
2388pub(crate) fn clean_field_with_def_id(
2389    def_id: DefId,
2390    name: Symbol,
2391    ty: Type,
2392    cx: &mut DocContext<'_>,
2393) -> Item {
2394    Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
2395}
2396
2397pub(crate) fn clean_variant_def(variant: &ty::VariantDef, cx: &mut DocContext<'_>) -> Item {
2398    let discriminant = match variant.discr {
2399        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2400        ty::VariantDiscr::Relative(_) => None,
2401    };
2402
2403    let kind = match variant.ctor_kind() {
2404        Some(CtorKind::Const) => VariantKind::CLike,
2405        Some(CtorKind::Fn) => VariantKind::Tuple(
2406            variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2407        ),
2408        None => VariantKind::Struct(VariantStruct {
2409            fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2410        }),
2411    };
2412
2413    Item::from_def_id_and_parts(
2414        variant.def_id,
2415        Some(variant.name),
2416        VariantItem(Variant { kind, discriminant }),
2417        cx,
2418    )
2419}
2420
2421pub(crate) fn clean_variant_def_with_args<'tcx>(
2422    variant: &ty::VariantDef,
2423    args: &GenericArgsRef<'tcx>,
2424    cx: &mut DocContext<'tcx>,
2425) -> Item {
2426    let discriminant = match variant.discr {
2427        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2428        ty::VariantDiscr::Relative(_) => None,
2429    };
2430
2431    use rustc_middle::traits::ObligationCause;
2432    use rustc_trait_selection::infer::TyCtxtInferExt;
2433    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
2434
2435    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
2436    let kind = match variant.ctor_kind() {
2437        Some(CtorKind::Const) => VariantKind::CLike,
2438        Some(CtorKind::Fn) => VariantKind::Tuple(
2439            variant
2440                .fields
2441                .iter()
2442                .map(|field| {
2443                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2444
2445                    // normalize the type to only show concrete types
2446                    // note: we do not use try_normalize_erasing_regions since we
2447                    // do care about showing the regions
2448                    let ty = infcx
2449                        .at(&ObligationCause::dummy(), cx.param_env)
2450                        .query_normalize(ty)
2451                        .map(|normalized| normalized.value)
2452                        .unwrap_or(ty);
2453
2454                    clean_field_with_def_id(
2455                        field.did,
2456                        field.name,
2457                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2458                        cx,
2459                    )
2460                })
2461                .collect(),
2462        ),
2463        None => VariantKind::Struct(VariantStruct {
2464            fields: variant
2465                .fields
2466                .iter()
2467                .map(|field| {
2468                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2469
2470                    // normalize the type to only show concrete types
2471                    // note: we do not use try_normalize_erasing_regions since we
2472                    // do care about showing the regions
2473                    let ty = infcx
2474                        .at(&ObligationCause::dummy(), cx.param_env)
2475                        .query_normalize(ty)
2476                        .map(|normalized| normalized.value)
2477                        .unwrap_or(ty);
2478
2479                    clean_field_with_def_id(
2480                        field.did,
2481                        field.name,
2482                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2483                        cx,
2484                    )
2485                })
2486                .collect(),
2487        }),
2488    };
2489
2490    Item::from_def_id_and_parts(
2491        variant.def_id,
2492        Some(variant.name),
2493        VariantItem(Variant { kind, discriminant }),
2494        cx,
2495    )
2496}
2497
2498fn clean_variant_data<'tcx>(
2499    variant: &hir::VariantData<'tcx>,
2500    disr_expr: &Option<&hir::AnonConst>,
2501    cx: &mut DocContext<'tcx>,
2502) -> Variant {
2503    let discriminant = disr_expr
2504        .map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
2505
2506    let kind = match variant {
2507        hir::VariantData::Struct { fields, .. } => VariantKind::Struct(VariantStruct {
2508            fields: fields.iter().map(|x| clean_field(x, cx)).collect(),
2509        }),
2510        hir::VariantData::Tuple(..) => {
2511            VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
2512        }
2513        hir::VariantData::Unit(..) => VariantKind::CLike,
2514    };
2515
2516    Variant { discriminant, kind }
2517}
2518
2519fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
2520    Path {
2521        res: path.res,
2522        segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
2523    }
2524}
2525
2526fn clean_generic_args<'tcx>(
2527    generic_args: &hir::GenericArgs<'tcx>,
2528    cx: &mut DocContext<'tcx>,
2529) -> GenericArgs {
2530    match generic_args.parenthesized {
2531        hir::GenericArgsParentheses::No => {
2532            let args = generic_args
2533                .args
2534                .iter()
2535                .map(|arg| match arg {
2536                    hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
2537                        GenericArg::Lifetime(clean_lifetime(lt, cx))
2538                    }
2539                    hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
2540                    hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty.as_unambig_ty(), cx)),
2541                    hir::GenericArg::Const(ct) => {
2542                        GenericArg::Const(Box::new(clean_const(ct.as_unambig_ct(), cx)))
2543                    }
2544                    hir::GenericArg::Infer(_inf) => GenericArg::Infer,
2545                })
2546                .collect();
2547            let constraints = generic_args
2548                .constraints
2549                .iter()
2550                .map(|c| clean_assoc_item_constraint(c, cx))
2551                .collect::<ThinVec<_>>();
2552            GenericArgs::AngleBracketed { args, constraints }
2553        }
2554        hir::GenericArgsParentheses::ParenSugar => {
2555            let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() else {
2556                bug!();
2557            };
2558            let inputs = inputs.iter().map(|x| clean_ty(x, cx)).collect();
2559            let output = match output.kind {
2560                hir::TyKind::Tup(&[]) => None,
2561                _ => Some(Box::new(clean_ty(output, cx))),
2562            };
2563            GenericArgs::Parenthesized { inputs, output }
2564        }
2565        hir::GenericArgsParentheses::ReturnTypeNotation => GenericArgs::ReturnTypeNotation,
2566    }
2567}
2568
2569fn clean_path_segment<'tcx>(
2570    path: &hir::PathSegment<'tcx>,
2571    cx: &mut DocContext<'tcx>,
2572) -> PathSegment {
2573    PathSegment { name: path.ident.name, args: clean_generic_args(path.args(), cx) }
2574}
2575
2576fn clean_bare_fn_ty<'tcx>(
2577    bare_fn: &hir::BareFnTy<'tcx>,
2578    cx: &mut DocContext<'tcx>,
2579) -> BareFunctionDecl {
2580    let (generic_params, decl) = enter_impl_trait(cx, |cx| {
2581        // NOTE: Generics must be cleaned before params.
2582        let generic_params = bare_fn
2583            .generic_params
2584            .iter()
2585            .filter(|p| !is_elided_lifetime(p))
2586            .map(|x| clean_generic_param(cx, None, x))
2587            .collect();
2588        // Since it's more conventional stylistically, elide the name of all params called `_`
2589        // unless there's at least one interestingly named param in which case don't elide any
2590        // name since mixing named and unnamed params is less legible.
2591        let filter = |ident: Option<Ident>| {
2592            ident.map(|ident| ident.name).filter(|&ident| ident != kw::Underscore)
2593        };
2594        let fallback =
2595            bare_fn.param_idents.iter().copied().find_map(filter).map(|_| kw::Underscore);
2596        let params = clean_params(cx, bare_fn.decl.inputs, bare_fn.param_idents, |ident| {
2597            filter(ident).or(fallback)
2598        });
2599        let decl = clean_fn_decl_with_params(cx, bare_fn.decl, None, params);
2600        (generic_params, decl)
2601    });
2602    BareFunctionDecl { safety: bare_fn.safety, abi: bare_fn.abi, decl, generic_params }
2603}
2604
2605fn clean_unsafe_binder_ty<'tcx>(
2606    unsafe_binder_ty: &hir::UnsafeBinderTy<'tcx>,
2607    cx: &mut DocContext<'tcx>,
2608) -> UnsafeBinderTy {
2609    let generic_params = unsafe_binder_ty
2610        .generic_params
2611        .iter()
2612        .filter(|p| !is_elided_lifetime(p))
2613        .map(|x| clean_generic_param(cx, None, x))
2614        .collect();
2615    let ty = clean_ty(unsafe_binder_ty.inner_ty, cx);
2616    UnsafeBinderTy { generic_params, ty }
2617}
2618
2619pub(crate) fn reexport_chain(
2620    tcx: TyCtxt<'_>,
2621    import_def_id: LocalDefId,
2622    target_def_id: DefId,
2623) -> &[Reexport] {
2624    for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
2625        if child.res.opt_def_id() == Some(target_def_id)
2626            && child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
2627        {
2628            return &child.reexport_chain;
2629        }
2630    }
2631    &[]
2632}
2633
2634/// Collect attributes from the whole import chain.
2635fn get_all_import_attributes<'hir>(
2636    cx: &mut DocContext<'hir>,
2637    import_def_id: LocalDefId,
2638    target_def_id: DefId,
2639    is_inline: bool,
2640) -> Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)> {
2641    let mut attrs = Vec::new();
2642    let mut first = true;
2643    for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
2644        .iter()
2645        .flat_map(|reexport| reexport.id())
2646    {
2647        let import_attrs = inline::load_attrs(cx, def_id);
2648        if first {
2649            // This is the "original" reexport so we get all its attributes without filtering them.
2650            attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
2651            first = false;
2652        // We don't add attributes of an intermediate re-export if it has `#[doc(hidden)]`.
2653        } else if cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id) {
2654            add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
2655        }
2656    }
2657    attrs
2658}
2659
2660fn filter_tokens_from_list(
2661    args_tokens: &TokenStream,
2662    should_retain: impl Fn(&TokenTree) -> bool,
2663) -> Vec<TokenTree> {
2664    let mut tokens = Vec::with_capacity(args_tokens.len());
2665    let mut skip_next_comma = false;
2666    for token in args_tokens.iter() {
2667        match token {
2668            TokenTree::Token(Token { kind: TokenKind::Comma, .. }, _) if skip_next_comma => {
2669                skip_next_comma = false;
2670            }
2671            token if should_retain(token) => {
2672                skip_next_comma = false;
2673                tokens.push(token.clone());
2674            }
2675            _ => {
2676                skip_next_comma = true;
2677            }
2678        }
2679    }
2680    tokens
2681}
2682
2683fn filter_doc_attr_ident(ident: Symbol, is_inline: bool) -> bool {
2684    if is_inline {
2685        ident == sym::hidden || ident == sym::inline || ident == sym::no_inline
2686    } else {
2687        ident == sym::cfg
2688    }
2689}
2690
2691/// Remove attributes from `normal` that should not be inherited by `use` re-export.
2692/// Before calling this function, make sure `normal` is a `#[doc]` attribute.
2693fn filter_doc_attr(args: &mut hir::AttrArgs, is_inline: bool) {
2694    match args {
2695        hir::AttrArgs::Delimited(args) => {
2696            let tokens = filter_tokens_from_list(&args.tokens, |token| {
2697                !matches!(
2698                    token,
2699                    TokenTree::Token(
2700                        Token {
2701                            kind: TokenKind::Ident(
2702                                ident,
2703                                _,
2704                            ),
2705                            ..
2706                        },
2707                        _,
2708                    ) if filter_doc_attr_ident(*ident, is_inline),
2709                )
2710            });
2711            args.tokens = TokenStream::new(tokens);
2712        }
2713        hir::AttrArgs::Empty | hir::AttrArgs::Eq { .. } => {}
2714    }
2715}
2716
2717/// When inlining items, we merge their attributes (and all the reexports attributes too) with the
2718/// final reexport. For example:
2719///
2720/// ```ignore (just an example)
2721/// #[doc(hidden, cfg(feature = "foo"))]
2722/// pub struct Foo;
2723///
2724/// #[doc(cfg(feature = "bar"))]
2725/// #[doc(hidden, no_inline)]
2726/// pub use Foo as Foo1;
2727///
2728/// #[doc(inline)]
2729/// pub use Foo2 as Bar;
2730/// ```
2731///
2732/// So `Bar` at the end will have both `cfg(feature = "...")`. However, we don't want to merge all
2733/// attributes so we filter out the following ones:
2734/// * `doc(inline)`
2735/// * `doc(no_inline)`
2736/// * `doc(hidden)`
2737fn add_without_unwanted_attributes<'hir>(
2738    attrs: &mut Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)>,
2739    new_attrs: &'hir [hir::Attribute],
2740    is_inline: bool,
2741    import_parent: Option<DefId>,
2742) {
2743    for attr in new_attrs {
2744        if attr.is_doc_comment() {
2745            attrs.push((Cow::Borrowed(attr), import_parent));
2746            continue;
2747        }
2748        let mut attr = attr.clone();
2749        match attr {
2750            hir::Attribute::Unparsed(ref mut normal) if let [ident] = &*normal.path.segments => {
2751                let ident = ident.name;
2752                if ident == sym::doc {
2753                    filter_doc_attr(&mut normal.args, is_inline);
2754                    attrs.push((Cow::Owned(attr), import_parent));
2755                } else if is_inline || ident != sym::cfg_trace {
2756                    // If it's not a `cfg()` attribute, we keep it.
2757                    attrs.push((Cow::Owned(attr), import_parent));
2758                }
2759            }
2760            hir::Attribute::Parsed(..) if is_inline => {
2761                attrs.push((Cow::Owned(attr), import_parent));
2762            }
2763            _ => {}
2764        }
2765    }
2766}
2767
2768fn clean_maybe_renamed_item<'tcx>(
2769    cx: &mut DocContext<'tcx>,
2770    item: &hir::Item<'tcx>,
2771    renamed: Option<Symbol>,
2772    import_id: Option<LocalDefId>,
2773) -> Vec<Item> {
2774    use hir::ItemKind;
2775
2776    fn get_name(
2777        cx: &DocContext<'_>,
2778        item: &hir::Item<'_>,
2779        renamed: Option<Symbol>,
2780    ) -> Option<Symbol> {
2781        renamed.or_else(|| cx.tcx.hir_opt_name(item.hir_id()))
2782    }
2783
2784    let def_id = item.owner_id.to_def_id();
2785    cx.with_param_env(def_id, |cx| {
2786        // These kinds of item either don't need a `name` or accept a `None` one so we handle them
2787        // before.
2788        match item.kind {
2789            ItemKind::Impl(impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
2790            ItemKind::Use(path, kind) => {
2791                return clean_use_statement(
2792                    item,
2793                    get_name(cx, item, renamed),
2794                    path,
2795                    kind,
2796                    cx,
2797                    &mut FxHashSet::default(),
2798                );
2799            }
2800            _ => {}
2801        }
2802
2803        let mut name = get_name(cx, item, renamed).unwrap();
2804
2805        let kind = match item.kind {
2806            ItemKind::Static(_, ty, mutability, body_id) => StaticItem(Static {
2807                type_: Box::new(clean_ty(ty, cx)),
2808                mutability,
2809                expr: Some(body_id),
2810            }),
2811            ItemKind::Const(_, ty, generics, body_id) => ConstantItem(Box::new(Constant {
2812                generics: clean_generics(generics, cx),
2813                type_: clean_ty(ty, cx),
2814                kind: ConstantKind::Local { body: body_id, def_id },
2815            })),
2816            ItemKind::TyAlias(_, hir_ty, generics) => {
2817                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2818                let rustdoc_ty = clean_ty(hir_ty, cx);
2819                let type_ =
2820                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
2821                let generics = clean_generics(generics, cx);
2822                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2823                    *count -= 1;
2824                    if *count == 0 {
2825                        cx.current_type_aliases.remove(&def_id);
2826                    }
2827                }
2828
2829                let ty = cx.tcx.type_of(def_id).instantiate_identity();
2830
2831                let mut ret = Vec::new();
2832                let inner_type = clean_ty_alias_inner_type(ty, cx, &mut ret);
2833
2834                ret.push(generate_item_with_correct_attrs(
2835                    cx,
2836                    TypeAliasItem(Box::new(TypeAlias {
2837                        generics,
2838                        inner_type,
2839                        type_: rustdoc_ty,
2840                        item_type: Some(type_),
2841                    })),
2842                    item.owner_id.def_id.to_def_id(),
2843                    name,
2844                    import_id,
2845                    renamed,
2846                ));
2847                return ret;
2848            }
2849            ItemKind::Enum(_, ref def, generics) => EnumItem(Enum {
2850                variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
2851                generics: clean_generics(generics, cx),
2852            }),
2853            ItemKind::TraitAlias(_, generics, bounds) => TraitAliasItem(TraitAlias {
2854                generics: clean_generics(generics, cx),
2855                bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2856            }),
2857            ItemKind::Union(_, ref variant_data, generics) => UnionItem(Union {
2858                generics: clean_generics(generics, cx),
2859                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2860            }),
2861            ItemKind::Struct(_, ref variant_data, generics) => StructItem(Struct {
2862                ctor_kind: variant_data.ctor_kind(),
2863                generics: clean_generics(generics, cx),
2864                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2865            }),
2866            ItemKind::Macro(_, macro_def, MacroKind::Bang) => MacroItem(Macro {
2867                source: display_macro_source(cx, name, macro_def),
2868                macro_rules: macro_def.macro_rules,
2869            }),
2870            ItemKind::Macro(_, _, macro_kind) => clean_proc_macro(item, &mut name, macro_kind, cx),
2871            // proc macros can have a name set by attributes
2872            ItemKind::Fn { ref sig, generics, body: body_id, .. } => {
2873                clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
2874            }
2875            ItemKind::Trait(_, _, _, generics, bounds, item_ids) => {
2876                let items = item_ids
2877                    .iter()
2878                    .map(|ti| clean_trait_item(cx.tcx.hir_trait_item(ti.id), cx))
2879                    .collect();
2880
2881                TraitItem(Box::new(Trait {
2882                    def_id,
2883                    items,
2884                    generics: clean_generics(generics, cx),
2885                    bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2886                }))
2887            }
2888            ItemKind::ExternCrate(orig_name, _) => {
2889                return clean_extern_crate(item, name, orig_name, cx);
2890            }
2891            _ => span_bug!(item.span, "not yet converted"),
2892        };
2893
2894        vec![generate_item_with_correct_attrs(
2895            cx,
2896            kind,
2897            item.owner_id.def_id.to_def_id(),
2898            name,
2899            import_id,
2900            renamed,
2901        )]
2902    })
2903}
2904
2905fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2906    let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
2907    Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
2908}
2909
2910fn clean_impl<'tcx>(
2911    impl_: &hir::Impl<'tcx>,
2912    def_id: LocalDefId,
2913    cx: &mut DocContext<'tcx>,
2914) -> Vec<Item> {
2915    let tcx = cx.tcx;
2916    let mut ret = Vec::new();
2917    let trait_ = impl_.of_trait.as_ref().map(|t| clean_trait_ref(t, cx));
2918    let items = impl_
2919        .items
2920        .iter()
2921        .map(|ii| clean_impl_item(tcx.hir_impl_item(ii.id), cx))
2922        .collect::<Vec<_>>();
2923
2924    // If this impl block is an implementation of the Deref trait, then we
2925    // need to try inlining the target's inherent impl blocks as well.
2926    if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
2927        build_deref_target_impls(cx, &items, &mut ret);
2928    }
2929
2930    let for_ = clean_ty(impl_.self_ty, cx);
2931    let type_alias =
2932        for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
2933            DefKind::TyAlias => Some(clean_middle_ty(
2934                ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
2935                cx,
2936                Some(def_id.to_def_id()),
2937                None,
2938            )),
2939            _ => None,
2940        });
2941    let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
2942        let kind = ImplItem(Box::new(Impl {
2943            safety: impl_.safety,
2944            generics: clean_generics(impl_.generics, cx),
2945            trait_,
2946            for_,
2947            items,
2948            polarity: tcx.impl_polarity(def_id),
2949            kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), sym::fake_variadic) {
2950                ImplKind::FakeVariadic
2951            } else {
2952                ImplKind::Normal
2953            },
2954        }));
2955        Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
2956    };
2957    if let Some(type_alias) = type_alias {
2958        ret.push(make_item(trait_.clone(), type_alias, items.clone()));
2959    }
2960    ret.push(make_item(trait_, for_, items));
2961    ret
2962}
2963
2964fn clean_extern_crate<'tcx>(
2965    krate: &hir::Item<'tcx>,
2966    name: Symbol,
2967    orig_name: Option<Symbol>,
2968    cx: &mut DocContext<'tcx>,
2969) -> Vec<Item> {
2970    // this is the ID of the `extern crate` statement
2971    let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
2972    // this is the ID of the crate itself
2973    let crate_def_id = cnum.as_def_id();
2974    let attrs = cx.tcx.hir_attrs(krate.hir_id());
2975    let ty_vis = cx.tcx.visibility(krate.owner_id);
2976    let please_inline = ty_vis.is_public()
2977        && attrs.iter().any(|a| {
2978            a.has_name(sym::doc)
2979                && match a.meta_item_list() {
2980                    Some(l) => ast::attr::list_contains_name(&l, sym::inline),
2981                    None => false,
2982                }
2983        })
2984        && !cx.is_json_output();
2985
2986    let krate_owner_def_id = krate.owner_id.def_id;
2987    if please_inline
2988        && let Some(items) = inline::try_inline(
2989            cx,
2990            Res::Def(DefKind::Mod, crate_def_id),
2991            name,
2992            Some((attrs, Some(krate_owner_def_id))),
2993            &mut Default::default(),
2994        )
2995    {
2996        return items;
2997    }
2998
2999    vec![Item::from_def_id_and_parts(
3000        krate_owner_def_id.to_def_id(),
3001        Some(name),
3002        ExternCrateItem { src: orig_name },
3003        cx,
3004    )]
3005}
3006
3007fn clean_use_statement<'tcx>(
3008    import: &hir::Item<'tcx>,
3009    name: Option<Symbol>,
3010    path: &hir::UsePath<'tcx>,
3011    kind: hir::UseKind,
3012    cx: &mut DocContext<'tcx>,
3013    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
3014) -> Vec<Item> {
3015    let mut items = Vec::new();
3016    let hir::UsePath { segments, ref res, span } = *path;
3017    for &res in res {
3018        let path = hir::Path { segments, res, span };
3019        items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
3020    }
3021    items
3022}
3023
3024fn clean_use_statement_inner<'tcx>(
3025    import: &hir::Item<'tcx>,
3026    name: Option<Symbol>,
3027    path: &hir::Path<'tcx>,
3028    kind: hir::UseKind,
3029    cx: &mut DocContext<'tcx>,
3030    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
3031) -> Vec<Item> {
3032    if should_ignore_res(path.res) {
3033        return Vec::new();
3034    }
3035    // We need this comparison because some imports (for std types for example)
3036    // are "inserted" as well but directly by the compiler and they should not be
3037    // taken into account.
3038    if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
3039        return Vec::new();
3040    }
3041
3042    let visibility = cx.tcx.visibility(import.owner_id);
3043    let attrs = cx.tcx.hir_attrs(import.hir_id());
3044    let inline_attr = hir_attr_lists(attrs, sym::doc).get_word_attr(sym::inline);
3045    let pub_underscore = visibility.is_public() && name == Some(kw::Underscore);
3046    let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
3047    let import_def_id = import.owner_id.def_id;
3048
3049    // The parent of the module in which this import resides. This
3050    // is the same as `current_mod` if that's already the top
3051    // level module.
3052    let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
3053
3054    // This checks if the import can be seen from a higher level module.
3055    // In other words, it checks if the visibility is the equivalent of
3056    // `pub(super)` or higher. If the current module is the top level
3057    // module, there isn't really a parent module, which makes the results
3058    // meaningless. In this case, we make sure the answer is `false`.
3059    let is_visible_from_parent_mod =
3060        visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
3061
3062    if pub_underscore && let Some(ref inline) = inline_attr {
3063        struct_span_code_err!(
3064            cx.tcx.dcx(),
3065            inline.span(),
3066            E0780,
3067            "anonymous imports cannot be inlined"
3068        )
3069        .with_span_label(import.span, "anonymous import")
3070        .emit();
3071    }
3072
3073    // We consider inlining the documentation of `pub use` statements, but we
3074    // forcefully don't inline if this is not public or if the
3075    // #[doc(no_inline)] attribute is present.
3076    // Don't inline doc(hidden) imports so they can be stripped at a later stage.
3077    let mut denied = cx.is_json_output()
3078        || !(visibility.is_public()
3079            || (cx.render_options.document_private && is_visible_from_parent_mod))
3080        || pub_underscore
3081        || attrs.iter().any(|a| {
3082            a.has_name(sym::doc)
3083                && match a.meta_item_list() {
3084                    Some(l) => {
3085                        ast::attr::list_contains_name(&l, sym::no_inline)
3086                            || ast::attr::list_contains_name(&l, sym::hidden)
3087                    }
3088                    None => false,
3089                }
3090        });
3091
3092    // Also check whether imports were asked to be inlined, in case we're trying to re-export a
3093    // crate in Rust 2018+
3094    let path = clean_path(path, cx);
3095    let inner = if kind == hir::UseKind::Glob {
3096        if !denied {
3097            let mut visited = DefIdSet::default();
3098            if let Some(items) = inline::try_inline_glob(
3099                cx,
3100                path.res,
3101                current_mod,
3102                &mut visited,
3103                inlined_names,
3104                import,
3105            ) {
3106                return items;
3107            }
3108        }
3109        Import::new_glob(resolve_use_source(cx, path), true)
3110    } else {
3111        let name = name.unwrap();
3112        if inline_attr.is_none()
3113            && let Res::Def(DefKind::Mod, did) = path.res
3114            && !did.is_local()
3115            && did.is_crate_root()
3116        {
3117            // if we're `pub use`ing an extern crate root, don't inline it unless we
3118            // were specifically asked for it
3119            denied = true;
3120        }
3121        if !denied
3122            && let Some(mut items) = inline::try_inline(
3123                cx,
3124                path.res,
3125                name,
3126                Some((attrs, Some(import_def_id))),
3127                &mut Default::default(),
3128            )
3129        {
3130            items.push(Item::from_def_id_and_parts(
3131                import_def_id.to_def_id(),
3132                None,
3133                ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
3134                cx,
3135            ));
3136            return items;
3137        }
3138        Import::new_simple(name, resolve_use_source(cx, path), true)
3139    };
3140
3141    vec![Item::from_def_id_and_parts(import_def_id.to_def_id(), None, ImportItem(inner), cx)]
3142}
3143
3144fn clean_maybe_renamed_foreign_item<'tcx>(
3145    cx: &mut DocContext<'tcx>,
3146    item: &hir::ForeignItem<'tcx>,
3147    renamed: Option<Symbol>,
3148) -> Item {
3149    let def_id = item.owner_id.to_def_id();
3150    cx.with_param_env(def_id, |cx| {
3151        let kind = match item.kind {
3152            hir::ForeignItemKind::Fn(sig, idents, generics) => ForeignFunctionItem(
3153                clean_function(cx, &sig, generics, ParamsSrc::Idents(idents)),
3154                sig.header.safety(),
3155            ),
3156            hir::ForeignItemKind::Static(ty, mutability, safety) => ForeignStaticItem(
3157                Static { type_: Box::new(clean_ty(ty, cx)), mutability, expr: None },
3158                safety,
3159            ),
3160            hir::ForeignItemKind::Type => ForeignTypeItem,
3161        };
3162
3163        Item::from_def_id_and_parts(
3164            item.owner_id.def_id.to_def_id(),
3165            Some(renamed.unwrap_or(item.ident.name)),
3166            kind,
3167            cx,
3168        )
3169    })
3170}
3171
3172fn clean_assoc_item_constraint<'tcx>(
3173    constraint: &hir::AssocItemConstraint<'tcx>,
3174    cx: &mut DocContext<'tcx>,
3175) -> AssocItemConstraint {
3176    AssocItemConstraint {
3177        assoc: PathSegment {
3178            name: constraint.ident.name,
3179            args: clean_generic_args(constraint.gen_args, cx),
3180        },
3181        kind: match constraint.kind {
3182            hir::AssocItemConstraintKind::Equality { ref term } => {
3183                AssocItemConstraintKind::Equality { term: clean_hir_term(term, cx) }
3184            }
3185            hir::AssocItemConstraintKind::Bound { bounds } => AssocItemConstraintKind::Bound {
3186                bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
3187            },
3188        },
3189    }
3190}
3191
3192fn clean_bound_vars(bound_vars: &ty::List<ty::BoundVariableKind>) -> Vec<GenericParamDef> {
3193    bound_vars
3194        .into_iter()
3195        .filter_map(|var| match var {
3196            ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id, name))
3197                if name != kw::UnderscoreLifetime =>
3198            {
3199                Some(GenericParamDef::lifetime(def_id, name))
3200            }
3201            ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id, name)) => {
3202                Some(GenericParamDef {
3203                    name,
3204                    def_id,
3205                    kind: GenericParamDefKind::Type {
3206                        bounds: ThinVec::new(),
3207                        default: None,
3208                        synthetic: false,
3209                    },
3210                })
3211            }
3212            // FIXME(non_lifetime_binders): Support higher-ranked const parameters.
3213            ty::BoundVariableKind::Const => None,
3214            _ => None,
3215        })
3216        .collect()
3217}