iterator.rs - source (original) (raw)

core/iter/traits/

iterator.rs

1use super::super::{
2    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
3    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
4    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
5    Zip, try_process,
6};
7use crate::array;
8use crate::cmp::{self, Ordering};
9use crate::num::NonZero;
10use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
11
12fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
13
14/// A trait for dealing with iterators.
15///
16/// This is the main iterator trait. For more about the concept of iterators
17/// generally, please see the [module-level documentation]. In particular, you
18/// may want to know how to [implement `Iterator`][impl].
19///
20/// [module-level documentation]: crate::iter
21/// [impl]: crate::iter#implementing-iterator
22#[stable(feature = "rust1", since = "1.0.0")]
23#[rustc_on_unimplemented(
24    on(
25        _Self = "core::ops::range::RangeTo<Idx>",
26        note = "you might have meant to use a bounded `Range`"
27    ),
28    on(
29        _Self = "core::ops::range::RangeToInclusive<Idx>",
30        note = "you might have meant to use a bounded `RangeInclusive`"
31    ),
32    label = "`{Self}` is not an iterator",
33    message = "`{Self}` is not an iterator"
34)]
35#[doc(notable_trait)]
36#[lang = "iterator"]
37#[rustc_diagnostic_item = "Iterator"]
38#[must_use = "iterators are lazy and do nothing unless consumed"]
39pub trait Iterator {
40    /// The type of the elements being iterated over.
41    #[rustc_diagnostic_item = "IteratorItem"]
42    #[stable(feature = "rust1", since = "1.0.0")]
43    type Item;
44
45    /// Advances the iterator and returns the next value.
46    ///
47    /// Returns [`None`] when iteration is finished. Individual iterator
48    /// implementations may choose to resume iteration, and so calling `next()`
49    /// again may or may not eventually start returning [`Some(Item)`] again at some
50    /// point.
51    ///
52    /// [`Some(Item)`]: Some
53    ///
54    /// # Examples
55    ///
56    /// ```
57    /// let a = [1, 2, 3];
58    ///
59    /// let mut iter = a.into_iter();
60    ///
61    /// // A call to next() returns the next value...
62    /// assert_eq!(Some(1), iter.next());
63    /// assert_eq!(Some(2), iter.next());
64    /// assert_eq!(Some(3), iter.next());
65    ///
66    /// // ... and then None once it's over.
67    /// assert_eq!(None, iter.next());
68    ///
69    /// // More calls may or may not return `None`. Here, they always will.
70    /// assert_eq!(None, iter.next());
71    /// assert_eq!(None, iter.next());
72    /// ```
73    #[lang = "next"]
74    #[stable(feature = "rust1", since = "1.0.0")]
75    fn next(&mut self) -> Option<Self::Item>;
76
77    /// Advances the iterator and returns an array containing the next `N` values.
78    ///
79    /// If there are not enough elements to fill the array then `Err` is returned
80    /// containing an iterator over the remaining elements.
81    ///
82    /// # Examples
83    ///
84    /// Basic usage:
85    ///
86    /// ```
87    /// #![feature(iter_next_chunk)]
88    ///
89    /// let mut iter = "lorem".chars();
90    ///
91    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
92    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
93    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
94    /// ```
95    ///
96    /// Split a string and get the first three items.
97    ///
98    /// ```
99    /// #![feature(iter_next_chunk)]
100    ///
101    /// let quote = "not all those who wander are lost";
102    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
103    /// assert_eq!(first, "not");
104    /// assert_eq!(second, "all");
105    /// assert_eq!(third, "those");
106    /// ```
107    #[inline]
108    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
109    fn next_chunk<const N: usize>(
110        &mut self,
111    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
112    where
113        Self: Sized,
114    {
115        array::iter_next_chunk(self)
116    }
117
118    /// Returns the bounds on the remaining length of the iterator.
119    ///
120    /// Specifically, `size_hint()` returns a tuple where the first element
121    /// is the lower bound, and the second element is the upper bound.
122    ///
123    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
124    /// A [`None`] here means that either there is no known upper bound, or the
125    /// upper bound is larger than [`usize`].
126    ///
127    /// # Implementation notes
128    ///
129    /// It is not enforced that an iterator implementation yields the declared
130    /// number of elements. A buggy iterator may yield less than the lower bound
131    /// or more than the upper bound of elements.
132    ///
133    /// `size_hint()` is primarily intended to be used for optimizations such as
134    /// reserving space for the elements of the iterator, but must not be
135    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
136    /// implementation of `size_hint()` should not lead to memory safety
137    /// violations.
138    ///
139    /// That said, the implementation should provide a correct estimation,
140    /// because otherwise it would be a violation of the trait's protocol.
141    ///
142    /// The default implementation returns <code>(0, [None])</code> which is correct for any
143    /// iterator.
144    ///
145    /// # Examples
146    ///
147    /// Basic usage:
148    ///
149    /// ```
150    /// let a = [1, 2, 3];
151    /// let mut iter = a.iter();
152    ///
153    /// assert_eq!((3, Some(3)), iter.size_hint());
154    /// let _ = iter.next();
155    /// assert_eq!((2, Some(2)), iter.size_hint());
156    /// ```
157    ///
158    /// A more complex example:
159    ///
160    /// ```
161    /// // The even numbers in the range of zero to nine.
162    /// let iter = (0..10).filter(|x| x % 2 == 0);
163    ///
164    /// // We might iterate from zero to ten times. Knowing that it's five
165    /// // exactly wouldn't be possible without executing filter().
166    /// assert_eq!((0, Some(10)), iter.size_hint());
167    ///
168    /// // Let's add five more numbers with chain()
169    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
170    ///
171    /// // now both bounds are increased by five
172    /// assert_eq!((5, Some(15)), iter.size_hint());
173    /// ```
174    ///
175    /// Returning `None` for an upper bound:
176    ///
177    /// ```
178    /// // an infinite iterator has no upper bound
179    /// // and the maximum possible lower bound
180    /// let iter = 0..;
181    ///
182    /// assert_eq!((usize::MAX, None), iter.size_hint());
183    /// ```
184    #[inline]
185    #[stable(feature = "rust1", since = "1.0.0")]
186    fn size_hint(&self) -> (usize, Option<usize>) {
187        (0, None)
188    }
189
190    /// Consumes the iterator, counting the number of iterations and returning it.
191    ///
192    /// This method will call [`next`] repeatedly until [`None`] is encountered,
193    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
194    /// called at least once even if the iterator does not have any elements.
195    ///
196    /// [`next`]: Iterator::next
197    ///
198    /// # Overflow Behavior
199    ///
200    /// The method does no guarding against overflows, so counting elements of
201    /// an iterator with more than [`usize::MAX`] elements either produces the
202    /// wrong result or panics. If overflow checks are enabled, a panic is
203    /// guaranteed.
204    ///
205    /// # Panics
206    ///
207    /// This function might panic if the iterator has more than [`usize::MAX`]
208    /// elements.
209    ///
210    /// # Examples
211    ///
212    /// ```
213    /// let a = [1, 2, 3];
214    /// assert_eq!(a.iter().count(), 3);
215    ///
216    /// let a = [1, 2, 3, 4, 5];
217    /// assert_eq!(a.iter().count(), 5);
218    /// ```
219    #[inline]
220    #[stable(feature = "rust1", since = "1.0.0")]
221    fn count(self) -> usize
222    where
223        Self: Sized,
224    {
225        self.fold(
226            0,
227            #[rustc_inherit_overflow_checks]
228            |count, _| count + 1,
229        )
230    }
231
232    /// Consumes the iterator, returning the last element.
233    ///
234    /// This method will evaluate the iterator until it returns [`None`]. While
235    /// doing so, it keeps track of the current element. After [`None`] is
236    /// returned, `last()` will then return the last element it saw.
237    ///
238    /// # Examples
239    ///
240    /// ```
241    /// let a = [1, 2, 3];
242    /// assert_eq!(a.into_iter().last(), Some(3));
243    ///
244    /// let a = [1, 2, 3, 4, 5];
245    /// assert_eq!(a.into_iter().last(), Some(5));
246    /// ```
247    #[inline]
248    #[stable(feature = "rust1", since = "1.0.0")]
249    fn last(self) -> Option<Self::Item>
250    where
251        Self: Sized,
252    {
253        #[inline]
254        fn some<T>(_: Option<T>, x: T) -> Option<T> {
255            Some(x)
256        }
257
258        self.fold(None, some)
259    }
260
261    /// Advances the iterator by `n` elements.
262    ///
263    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
264    /// times until [`None`] is encountered.
265    ///
266    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
267    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
268    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
269    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
270    /// Otherwise, `k` is always less than `n`.
271    ///
272    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
273    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
274    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
275    ///
276    /// [`Flatten`]: crate::iter::Flatten
277    /// [`next`]: Iterator::next
278    ///
279    /// # Examples
280    ///
281    /// ```
282    /// #![feature(iter_advance_by)]
283    ///
284    /// use std::num::NonZero;
285    ///
286    /// let a = [1, 2, 3, 4];
287    /// let mut iter = a.into_iter();
288    ///
289    /// assert_eq!(iter.advance_by(2), Ok(()));
290    /// assert_eq!(iter.next(), Some(3));
291    /// assert_eq!(iter.advance_by(0), Ok(()));
292    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
293    /// ```
294    #[inline]
295    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
296    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
297        for i in 0..n {
298            if self.next().is_none() {
299                // SAFETY: `i` is always less than `n`.
300                return Err(unsafe { NonZero::new_unchecked(n - i) });
301            }
302        }
303        Ok(())
304    }
305
306    /// Returns the `n`th element of the iterator.
307    ///
308    /// Like most indexing operations, the count starts from zero, so `nth(0)`
309    /// returns the first value, `nth(1)` the second, and so on.
310    ///
311    /// Note that all preceding elements, as well as the returned element, will be
312    /// consumed from the iterator. That means that the preceding elements will be
313    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
314    /// will return different elements.
315    ///
316    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
317    /// iterator.
318    ///
319    /// # Examples
320    ///
321    /// Basic usage:
322    ///
323    /// ```
324    /// let a = [1, 2, 3];
325    /// assert_eq!(a.into_iter().nth(1), Some(2));
326    /// ```
327    ///
328    /// Calling `nth()` multiple times doesn't rewind the iterator:
329    ///
330    /// ```
331    /// let a = [1, 2, 3];
332    ///
333    /// let mut iter = a.into_iter();
334    ///
335    /// assert_eq!(iter.nth(1), Some(2));
336    /// assert_eq!(iter.nth(1), None);
337    /// ```
338    ///
339    /// Returning `None` if there are less than `n + 1` elements:
340    ///
341    /// ```
342    /// let a = [1, 2, 3];
343    /// assert_eq!(a.into_iter().nth(10), None);
344    /// ```
345    #[inline]
346    #[stable(feature = "rust1", since = "1.0.0")]
347    fn nth(&mut self, n: usize) -> Option<Self::Item> {
348        self.advance_by(n).ok()?;
349        self.next()
350    }
351
352    /// Creates an iterator starting at the same point, but stepping by
353    /// the given amount at each iteration.
354    ///
355    /// Note 1: The first element of the iterator will always be returned,
356    /// regardless of the step given.
357    ///
358    /// Note 2: The time at which ignored elements are pulled is not fixed.
359    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
360    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
361    /// `advance_n_and_return_first(&mut self, step)`,
362    /// `advance_n_and_return_first(&mut self, step)`, …
363    /// Which way is used may change for some iterators for performance reasons.
364    /// The second way will advance the iterator earlier and may consume more items.
365    ///
366    /// `advance_n_and_return_first` is the equivalent of:
367    /// ```
368    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
369    /// where
370    ///     I: Iterator,
371    /// {
372    ///     let next = iter.next();
373    ///     if n > 1 {
374    ///         iter.nth(n - 2);
375    ///     }
376    ///     next
377    /// }
378    /// ```
379    ///
380    /// # Panics
381    ///
382    /// The method will panic if the given step is `0`.
383    ///
384    /// # Examples
385    ///
386    /// ```
387    /// let a = [0, 1, 2, 3, 4, 5];
388    /// let mut iter = a.into_iter().step_by(2);
389    ///
390    /// assert_eq!(iter.next(), Some(0));
391    /// assert_eq!(iter.next(), Some(2));
392    /// assert_eq!(iter.next(), Some(4));
393    /// assert_eq!(iter.next(), None);
394    /// ```
395    #[inline]
396    #[stable(feature = "iterator_step_by", since = "1.28.0")]
397    fn step_by(self, step: usize) -> StepBy<Self>
398    where
399        Self: Sized,
400    {
401        StepBy::new(self, step)
402    }
403
404    /// Takes two iterators and creates a new iterator over both in sequence.
405    ///
406    /// `chain()` will return a new iterator which will first iterate over
407    /// values from the first iterator and then over values from the second
408    /// iterator.
409    ///
410    /// In other words, it links two iterators together, in a chain. 🔗
411    ///
412    /// [`once`] is commonly used to adapt a single value into a chain of
413    /// other kinds of iteration.
414    ///
415    /// # Examples
416    ///
417    /// Basic usage:
418    ///
419    /// ```
420    /// let s1 = "abc".chars();
421    /// let s2 = "def".chars();
422    ///
423    /// let mut iter = s1.chain(s2);
424    ///
425    /// assert_eq!(iter.next(), Some('a'));
426    /// assert_eq!(iter.next(), Some('b'));
427    /// assert_eq!(iter.next(), Some('c'));
428    /// assert_eq!(iter.next(), Some('d'));
429    /// assert_eq!(iter.next(), Some('e'));
430    /// assert_eq!(iter.next(), Some('f'));
431    /// assert_eq!(iter.next(), None);
432    /// ```
433    ///
434    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
435    /// anything that can be converted into an [`Iterator`], not just an
436    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
437    /// [`IntoIterator`], and so can be passed to `chain()` directly:
438    ///
439    /// ```
440    /// let a1 = [1, 2, 3];
441    /// let a2 = [4, 5, 6];
442    ///
443    /// let mut iter = a1.into_iter().chain(a2);
444    ///
445    /// assert_eq!(iter.next(), Some(1));
446    /// assert_eq!(iter.next(), Some(2));
447    /// assert_eq!(iter.next(), Some(3));
448    /// assert_eq!(iter.next(), Some(4));
449    /// assert_eq!(iter.next(), Some(5));
450    /// assert_eq!(iter.next(), Some(6));
451    /// assert_eq!(iter.next(), None);
452    /// ```
453    ///
454    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
455    ///
456    /// ```
457    /// #[cfg(windows)]
458    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
459    ///     use std::os::windows::ffi::OsStrExt;
460    ///     s.encode_wide().chain(std::iter::once(0)).collect()
461    /// }
462    /// ```
463    ///
464    /// [`once`]: crate::iter::once
465    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
466    #[inline]
467    #[stable(feature = "rust1", since = "1.0.0")]
468    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
469    where
470        Self: Sized,
471        U: IntoIterator<Item = Self::Item>,
472    {
473        Chain::new(self, other.into_iter())
474    }
475
476    /// 'Zips up' two iterators into a single iterator of pairs.
477    ///
478    /// `zip()` returns a new iterator that will iterate over two other
479    /// iterators, returning a tuple where the first element comes from the
480    /// first iterator, and the second element comes from the second iterator.
481    ///
482    /// In other words, it zips two iterators together, into a single one.
483    ///
484    /// If either iterator returns [`None`], [`next`] from the zipped iterator
485    /// will return [`None`].
486    /// If the zipped iterator has no more elements to return then each further attempt to advance
487    /// it will first try to advance the first iterator at most one time and if it still yielded an item
488    /// try to advance the second iterator at most one time.
489    ///
490    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
491    ///
492    /// [`unzip`]: Iterator::unzip
493    ///
494    /// # Examples
495    ///
496    /// Basic usage:
497    ///
498    /// ```
499    /// let s1 = "abc".chars();
500    /// let s2 = "def".chars();
501    ///
502    /// let mut iter = s1.zip(s2);
503    ///
504    /// assert_eq!(iter.next(), Some(('a', 'd')));
505    /// assert_eq!(iter.next(), Some(('b', 'e')));
506    /// assert_eq!(iter.next(), Some(('c', 'f')));
507    /// assert_eq!(iter.next(), None);
508    /// ```
509    ///
510    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
511    /// anything that can be converted into an [`Iterator`], not just an
512    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
513    /// [`IntoIterator`], and so can be passed to `zip()` directly:
514    ///
515    /// ```
516    /// let a1 = [1, 2, 3];
517    /// let a2 = [4, 5, 6];
518    ///
519    /// let mut iter = a1.into_iter().zip(a2);
520    ///
521    /// assert_eq!(iter.next(), Some((1, 4)));
522    /// assert_eq!(iter.next(), Some((2, 5)));
523    /// assert_eq!(iter.next(), Some((3, 6)));
524    /// assert_eq!(iter.next(), None);
525    /// ```
526    ///
527    /// `zip()` is often used to zip an infinite iterator to a finite one.
528    /// This works because the finite iterator will eventually return [`None`],
529    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
530    ///
531    /// ```
532    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
533    ///
534    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
535    ///
536    /// assert_eq!((0, 'f'), enumerate[0]);
537    /// assert_eq!((0, 'f'), zipper[0]);
538    ///
539    /// assert_eq!((1, 'o'), enumerate[1]);
540    /// assert_eq!((1, 'o'), zipper[1]);
541    ///
542    /// assert_eq!((2, 'o'), enumerate[2]);
543    /// assert_eq!((2, 'o'), zipper[2]);
544    /// ```
545    ///
546    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
547    ///
548    /// ```
549    /// use std::iter::zip;
550    ///
551    /// let a = [1, 2, 3];
552    /// let b = [2, 3, 4];
553    ///
554    /// let mut zipped = zip(
555    ///     a.into_iter().map(|x| x * 2).skip(1),
556    ///     b.into_iter().map(|x| x * 2).skip(1),
557    /// );
558    ///
559    /// assert_eq!(zipped.next(), Some((4, 6)));
560    /// assert_eq!(zipped.next(), Some((6, 8)));
561    /// assert_eq!(zipped.next(), None);
562    /// ```
563    ///
564    /// compared to:
565    ///
566    /// ```
567    /// # let a = [1, 2, 3];
568    /// # let b = [2, 3, 4];
569    /// #
570    /// let mut zipped = a
571    ///     .into_iter()
572    ///     .map(|x| x * 2)
573    ///     .skip(1)
574    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
575    /// #
576    /// # assert_eq!(zipped.next(), Some((4, 6)));
577    /// # assert_eq!(zipped.next(), Some((6, 8)));
578    /// # assert_eq!(zipped.next(), None);
579    /// ```
580    ///
581    /// [`enumerate`]: Iterator::enumerate
582    /// [`next`]: Iterator::next
583    /// [`zip`]: crate::iter::zip
584    #[inline]
585    #[stable(feature = "rust1", since = "1.0.0")]
586    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
587    where
588        Self: Sized,
589        U: IntoIterator,
590    {
591        Zip::new(self, other.into_iter())
592    }
593
594    /// Creates a new iterator which places a copy of `separator` between adjacent
595    /// items of the original iterator.
596    ///
597    /// In case `separator` does not implement [`Clone`] or needs to be
598    /// computed every time, use [`intersperse_with`].
599    ///
600    /// # Examples
601    ///
602    /// Basic usage:
603    ///
604    /// ```
605    /// #![feature(iter_intersperse)]
606    ///
607    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
608    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
609    /// assert_eq!(a.next(), Some(100)); // The separator.
610    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
611    /// assert_eq!(a.next(), Some(100)); // The separator.
612    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
613    /// assert_eq!(a.next(), None);       // The iterator is finished.
614    /// ```
615    ///
616    /// `intersperse` can be very useful to join an iterator's items using a common element:
617    /// ```
618    /// #![feature(iter_intersperse)]
619    ///
620    /// let words = ["Hello", "World", "!"];
621    /// let hello: String = words.into_iter().intersperse(" ").collect();
622    /// assert_eq!(hello, "Hello World !");
623    /// ```
624    ///
625    /// [`Clone`]: crate::clone::Clone
626    /// [`intersperse_with`]: Iterator::intersperse_with
627    #[inline]
628    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
629    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
630    where
631        Self: Sized,
632        Self::Item: Clone,
633    {
634        Intersperse::new(self, separator)
635    }
636
637    /// Creates a new iterator which places an item generated by `separator`
638    /// between adjacent items of the original iterator.
639    ///
640    /// The closure will be called exactly once each time an item is placed
641    /// between two adjacent items from the underlying iterator; specifically,
642    /// the closure is not called if the underlying iterator yields less than
643    /// two items and after the last item is yielded.
644    ///
645    /// If the iterator's item implements [`Clone`], it may be easier to use
646    /// [`intersperse`].
647    ///
648    /// # Examples
649    ///
650    /// Basic usage:
651    ///
652    /// ```
653    /// #![feature(iter_intersperse)]
654    ///
655    /// #[derive(PartialEq, Debug)]
656    /// struct NotClone(usize);
657    ///
658    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
659    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
660    ///
661    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
662    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
663    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
664    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
665    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
666    /// assert_eq!(it.next(), None);               // The iterator is finished.
667    /// ```
668    ///
669    /// `intersperse_with` can be used in situations where the separator needs
670    /// to be computed:
671    /// ```
672    /// #![feature(iter_intersperse)]
673    ///
674    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
675    ///
676    /// // The closure mutably borrows its context to generate an item.
677    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
678    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
679    ///
680    /// let result = src.intersperse_with(separator).collect::<String>();
681    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
682    /// ```
683    /// [`Clone`]: crate::clone::Clone
684    /// [`intersperse`]: Iterator::intersperse
685    #[inline]
686    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
687    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
688    where
689        Self: Sized,
690        G: FnMut() -> Self::Item,
691    {
692        IntersperseWith::new(self, separator)
693    }
694
695    /// Takes a closure and creates an iterator which calls that closure on each
696    /// element.
697    ///
698    /// `map()` transforms one iterator into another, by means of its argument:
699    /// something that implements [`FnMut`]. It produces a new iterator which
700    /// calls this closure on each element of the original iterator.
701    ///
702    /// If you are good at thinking in types, you can think of `map()` like this:
703    /// If you have an iterator that gives you elements of some type `A`, and
704    /// you want an iterator of some other type `B`, you can use `map()`,
705    /// passing a closure that takes an `A` and returns a `B`.
706    ///
707    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
708    /// lazy, it is best used when you're already working with other iterators.
709    /// If you're doing some sort of looping for a side effect, it's considered
710    /// more idiomatic to use [`for`] than `map()`.
711    ///
712    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
713    ///
714    /// # Examples
715    ///
716    /// Basic usage:
717    ///
718    /// ```
719    /// let a = [1, 2, 3];
720    ///
721    /// let mut iter = a.iter().map(|x| 2 * x);
722    ///
723    /// assert_eq!(iter.next(), Some(2));
724    /// assert_eq!(iter.next(), Some(4));
725    /// assert_eq!(iter.next(), Some(6));
726    /// assert_eq!(iter.next(), None);
727    /// ```
728    ///
729    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
730    ///
731    /// ```
732    /// # #![allow(unused_must_use)]
733    /// // don't do this:
734    /// (0..5).map(|x| println!("{x}"));
735    ///
736    /// // it won't even execute, as it is lazy. Rust will warn you about this.
737    ///
738    /// // Instead, use a for-loop:
739    /// for x in 0..5 {
740    ///     println!("{x}");
741    /// }
742    /// ```
743    #[rustc_diagnostic_item = "IteratorMap"]
744    #[inline]
745    #[stable(feature = "rust1", since = "1.0.0")]
746    fn map<B, F>(self, f: F) -> Map<Self, F>
747    where
748        Self: Sized,
749        F: FnMut(Self::Item) -> B,
750    {
751        Map::new(self, f)
752    }
753
754    /// Calls a closure on each element of an iterator.
755    ///
756    /// This is equivalent to using a [`for`] loop on the iterator, although
757    /// `break` and `continue` are not possible from a closure. It's generally
758    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
759    /// when processing items at the end of longer iterator chains. In some
760    /// cases `for_each` may also be faster than a loop, because it will use
761    /// internal iteration on adapters like `Chain`.
762    ///
763    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
764    ///
765    /// # Examples
766    ///
767    /// Basic usage:
768    ///
769    /// ```
770    /// use std::sync::mpsc::channel;
771    ///
772    /// let (tx, rx) = channel();
773    /// (0..5).map(|x| x * 2 + 1)
774    ///       .for_each(move |x| tx.send(x).unwrap());
775    ///
776    /// let v: Vec<_> = rx.iter().collect();
777    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
778    /// ```
779    ///
780    /// For such a small example, a `for` loop may be cleaner, but `for_each`
781    /// might be preferable to keep a functional style with longer iterators:
782    ///
783    /// ```
784    /// (0..5).flat_map(|x| x * 100 .. x * 110)
785    ///       .enumerate()
786    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
787    ///       .for_each(|(i, x)| println!("{i}:{x}"));
788    /// ```
789    #[inline]
790    #[stable(feature = "iterator_for_each", since = "1.21.0")]
791    fn for_each<F>(self, f: F)
792    where
793        Self: Sized,
794        F: FnMut(Self::Item),
795    {
796        #[inline]
797        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
798            move |(), item| f(item)
799        }
800
801        self.fold((), call(f));
802    }
803
804    /// Creates an iterator which uses a closure to determine if an element
805    /// should be yielded.
806    ///
807    /// Given an element the closure must return `true` or `false`. The returned
808    /// iterator will yield only the elements for which the closure returns
809    /// `true`.
810    ///
811    /// # Examples
812    ///
813    /// Basic usage:
814    ///
815    /// ```
816    /// let a = [0i32, 1, 2];
817    ///
818    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
819    ///
820    /// assert_eq!(iter.next(), Some(1));
821    /// assert_eq!(iter.next(), Some(2));
822    /// assert_eq!(iter.next(), None);
823    /// ```
824    ///
825    /// Because the closure passed to `filter()` takes a reference, and many
826    /// iterators iterate over references, this leads to a possibly confusing
827    /// situation, where the type of the closure is a double reference:
828    ///
829    /// ```
830    /// let s = &[0, 1, 2];
831    ///
832    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
833    ///
834    /// assert_eq!(iter.next(), Some(&2));
835    /// assert_eq!(iter.next(), None);
836    /// ```
837    ///
838    /// It's common to instead use destructuring on the argument to strip away one:
839    ///
840    /// ```
841    /// let s = &[0, 1, 2];
842    ///
843    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
844    ///
845    /// assert_eq!(iter.next(), Some(&2));
846    /// assert_eq!(iter.next(), None);
847    /// ```
848    ///
849    /// or both:
850    ///
851    /// ```
852    /// let s = &[0, 1, 2];
853    ///
854    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
855    ///
856    /// assert_eq!(iter.next(), Some(&2));
857    /// assert_eq!(iter.next(), None);
858    /// ```
859    ///
860    /// of these layers.
861    ///
862    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
863    #[inline]
864    #[stable(feature = "rust1", since = "1.0.0")]
865    #[rustc_diagnostic_item = "iter_filter"]
866    fn filter<P>(self, predicate: P) -> Filter<Self, P>
867    where
868        Self: Sized,
869        P: FnMut(&Self::Item) -> bool,
870    {
871        Filter::new(self, predicate)
872    }
873
874    /// Creates an iterator that both filters and maps.
875    ///
876    /// The returned iterator yields only the `value`s for which the supplied
877    /// closure returns `Some(value)`.
878    ///
879    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
880    /// concise. The example below shows how a `map().filter().map()` can be
881    /// shortened to a single call to `filter_map`.
882    ///
883    /// [`filter`]: Iterator::filter
884    /// [`map`]: Iterator::map
885    ///
886    /// # Examples
887    ///
888    /// Basic usage:
889    ///
890    /// ```
891    /// let a = ["1", "two", "NaN", "four", "5"];
892    ///
893    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
894    ///
895    /// assert_eq!(iter.next(), Some(1));
896    /// assert_eq!(iter.next(), Some(5));
897    /// assert_eq!(iter.next(), None);
898    /// ```
899    ///
900    /// Here's the same example, but with [`filter`] and [`map`]:
901    ///
902    /// ```
903    /// let a = ["1", "two", "NaN", "four", "5"];
904    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
905    /// assert_eq!(iter.next(), Some(1));
906    /// assert_eq!(iter.next(), Some(5));
907    /// assert_eq!(iter.next(), None);
908    /// ```
909    #[inline]
910    #[stable(feature = "rust1", since = "1.0.0")]
911    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
912    where
913        Self: Sized,
914        F: FnMut(Self::Item) -> Option<B>,
915    {
916        FilterMap::new(self, f)
917    }
918
919    /// Creates an iterator which gives the current iteration count as well as
920    /// the next value.
921    ///
922    /// The iterator returned yields pairs `(i, val)`, where `i` is the
923    /// current index of iteration and `val` is the value returned by the
924    /// iterator.
925    ///
926    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
927    /// different sized integer, the [`zip`] function provides similar
928    /// functionality.
929    ///
930    /// # Overflow Behavior
931    ///
932    /// The method does no guarding against overflows, so enumerating more than
933    /// [`usize::MAX`] elements either produces the wrong result or panics. If
934    /// overflow checks are enabled, a panic is guaranteed.
935    ///
936    /// # Panics
937    ///
938    /// The returned iterator might panic if the to-be-returned index would
939    /// overflow a [`usize`].
940    ///
941    /// [`zip`]: Iterator::zip
942    ///
943    /// # Examples
944    ///
945    /// ```
946    /// let a = ['a', 'b', 'c'];
947    ///
948    /// let mut iter = a.into_iter().enumerate();
949    ///
950    /// assert_eq!(iter.next(), Some((0, 'a')));
951    /// assert_eq!(iter.next(), Some((1, 'b')));
952    /// assert_eq!(iter.next(), Some((2, 'c')));
953    /// assert_eq!(iter.next(), None);
954    /// ```
955    #[inline]
956    #[stable(feature = "rust1", since = "1.0.0")]
957    #[rustc_diagnostic_item = "enumerate_method"]
958    fn enumerate(self) -> Enumerate<Self>
959    where
960        Self: Sized,
961    {
962        Enumerate::new(self)
963    }
964
965    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
966    /// to look at the next element of the iterator without consuming it. See
967    /// their documentation for more information.
968    ///
969    /// Note that the underlying iterator is still advanced when [`peek`] or
970    /// [`peek_mut`] are called for the first time: In order to retrieve the
971    /// next element, [`next`] is called on the underlying iterator, hence any
972    /// side effects (i.e. anything other than fetching the next value) of
973    /// the [`next`] method will occur.
974    ///
975    ///
976    /// # Examples
977    ///
978    /// Basic usage:
979    ///
980    /// ```
981    /// let xs = [1, 2, 3];
982    ///
983    /// let mut iter = xs.into_iter().peekable();
984    ///
985    /// // peek() lets us see into the future
986    /// assert_eq!(iter.peek(), Some(&1));
987    /// assert_eq!(iter.next(), Some(1));
988    ///
989    /// assert_eq!(iter.next(), Some(2));
990    ///
991    /// // we can peek() multiple times, the iterator won't advance
992    /// assert_eq!(iter.peek(), Some(&3));
993    /// assert_eq!(iter.peek(), Some(&3));
994    ///
995    /// assert_eq!(iter.next(), Some(3));
996    ///
997    /// // after the iterator is finished, so is peek()
998    /// assert_eq!(iter.peek(), None);
999    /// assert_eq!(iter.next(), None);
1000    /// ```
1001    ///
1002    /// Using [`peek_mut`] to mutate the next item without advancing the
1003    /// iterator:
1004    ///
1005    /// ```
1006    /// let xs = [1, 2, 3];
1007    ///
1008    /// let mut iter = xs.into_iter().peekable();
1009    ///
1010    /// // `peek_mut()` lets us see into the future
1011    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1012    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1013    /// assert_eq!(iter.next(), Some(1));
1014    ///
1015    /// if let Some(p) = iter.peek_mut() {
1016    ///     assert_eq!(*p, 2);
1017    ///     // put a value into the iterator
1018    ///     *p = 1000;
1019    /// }
1020    ///
1021    /// // The value reappears as the iterator continues
1022    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1023    /// ```
1024    /// [`peek`]: Peekable::peek
1025    /// [`peek_mut`]: Peekable::peek_mut
1026    /// [`next`]: Iterator::next
1027    #[inline]
1028    #[stable(feature = "rust1", since = "1.0.0")]
1029    fn peekable(self) -> Peekable<Self>
1030    where
1031        Self: Sized,
1032    {
1033        Peekable::new(self)
1034    }
1035
1036    /// Creates an iterator that [`skip`]s elements based on a predicate.
1037    ///
1038    /// [`skip`]: Iterator::skip
1039    ///
1040    /// `skip_while()` takes a closure as an argument. It will call this
1041    /// closure on each element of the iterator, and ignore elements
1042    /// until it returns `false`.
1043    ///
1044    /// After `false` is returned, `skip_while()`'s job is over, and the
1045    /// rest of the elements are yielded.
1046    ///
1047    /// # Examples
1048    ///
1049    /// Basic usage:
1050    ///
1051    /// ```
1052    /// let a = [-1i32, 0, 1];
1053    ///
1054    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1055    ///
1056    /// assert_eq!(iter.next(), Some(0));
1057    /// assert_eq!(iter.next(), Some(1));
1058    /// assert_eq!(iter.next(), None);
1059    /// ```
1060    ///
1061    /// Because the closure passed to `skip_while()` takes a reference, and many
1062    /// iterators iterate over references, this leads to a possibly confusing
1063    /// situation, where the type of the closure argument is a double reference:
1064    ///
1065    /// ```
1066    /// let s = &[-1, 0, 1];
1067    ///
1068    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1069    ///
1070    /// assert_eq!(iter.next(), Some(&0));
1071    /// assert_eq!(iter.next(), Some(&1));
1072    /// assert_eq!(iter.next(), None);
1073    /// ```
1074    ///
1075    /// Stopping after an initial `false`:
1076    ///
1077    /// ```
1078    /// let a = [-1, 0, 1, -2];
1079    ///
1080    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1081    ///
1082    /// assert_eq!(iter.next(), Some(0));
1083    /// assert_eq!(iter.next(), Some(1));
1084    ///
1085    /// // while this would have been false, since we already got a false,
1086    /// // skip_while() isn't used any more
1087    /// assert_eq!(iter.next(), Some(-2));
1088    ///
1089    /// assert_eq!(iter.next(), None);
1090    /// ```
1091    #[inline]
1092    #[doc(alias = "drop_while")]
1093    #[stable(feature = "rust1", since = "1.0.0")]
1094    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1095    where
1096        Self: Sized,
1097        P: FnMut(&Self::Item) -> bool,
1098    {
1099        SkipWhile::new(self, predicate)
1100    }
1101
1102    /// Creates an iterator that yields elements based on a predicate.
1103    ///
1104    /// `take_while()` takes a closure as an argument. It will call this
1105    /// closure on each element of the iterator, and yield elements
1106    /// while it returns `true`.
1107    ///
1108    /// After `false` is returned, `take_while()`'s job is over, and the
1109    /// rest of the elements are ignored.
1110    ///
1111    /// # Examples
1112    ///
1113    /// Basic usage:
1114    ///
1115    /// ```
1116    /// let a = [-1i32, 0, 1];
1117    ///
1118    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1119    ///
1120    /// assert_eq!(iter.next(), Some(-1));
1121    /// assert_eq!(iter.next(), None);
1122    /// ```
1123    ///
1124    /// Because the closure passed to `take_while()` takes a reference, and many
1125    /// iterators iterate over references, this leads to a possibly confusing
1126    /// situation, where the type of the closure is a double reference:
1127    ///
1128    /// ```
1129    /// let s = &[-1, 0, 1];
1130    ///
1131    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1132    ///
1133    /// assert_eq!(iter.next(), Some(&-1));
1134    /// assert_eq!(iter.next(), None);
1135    /// ```
1136    ///
1137    /// Stopping after an initial `false`:
1138    ///
1139    /// ```
1140    /// let a = [-1, 0, 1, -2];
1141    ///
1142    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1143    ///
1144    /// assert_eq!(iter.next(), Some(-1));
1145    ///
1146    /// // We have more elements that are less than zero, but since we already
1147    /// // got a false, take_while() ignores the remaining elements.
1148    /// assert_eq!(iter.next(), None);
1149    /// ```
1150    ///
1151    /// Because `take_while()` needs to look at the value in order to see if it
1152    /// should be included or not, consuming iterators will see that it is
1153    /// removed:
1154    ///
1155    /// ```
1156    /// let a = [1, 2, 3, 4];
1157    /// let mut iter = a.into_iter();
1158    ///
1159    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1160    ///
1161    /// assert_eq!(result, [1, 2]);
1162    ///
1163    /// let result: Vec<i32> = iter.collect();
1164    ///
1165    /// assert_eq!(result, [4]);
1166    /// ```
1167    ///
1168    /// The `3` is no longer there, because it was consumed in order to see if
1169    /// the iteration should stop, but wasn't placed back into the iterator.
1170    #[inline]
1171    #[stable(feature = "rust1", since = "1.0.0")]
1172    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1173    where
1174        Self: Sized,
1175        P: FnMut(&Self::Item) -> bool,
1176    {
1177        TakeWhile::new(self, predicate)
1178    }
1179
1180    /// Creates an iterator that both yields elements based on a predicate and maps.
1181    ///
1182    /// `map_while()` takes a closure as an argument. It will call this
1183    /// closure on each element of the iterator, and yield elements
1184    /// while it returns [`Some(_)`][`Some`].
1185    ///
1186    /// # Examples
1187    ///
1188    /// Basic usage:
1189    ///
1190    /// ```
1191    /// let a = [-1i32, 4, 0, 1];
1192    ///
1193    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1194    ///
1195    /// assert_eq!(iter.next(), Some(-16));
1196    /// assert_eq!(iter.next(), Some(4));
1197    /// assert_eq!(iter.next(), None);
1198    /// ```
1199    ///
1200    /// Here's the same example, but with [`take_while`] and [`map`]:
1201    ///
1202    /// [`take_while`]: Iterator::take_while
1203    /// [`map`]: Iterator::map
1204    ///
1205    /// ```
1206    /// let a = [-1i32, 4, 0, 1];
1207    ///
1208    /// let mut iter = a.into_iter()
1209    ///                 .map(|x| 16i32.checked_div(x))
1210    ///                 .take_while(|x| x.is_some())
1211    ///                 .map(|x| x.unwrap());
1212    ///
1213    /// assert_eq!(iter.next(), Some(-16));
1214    /// assert_eq!(iter.next(), Some(4));
1215    /// assert_eq!(iter.next(), None);
1216    /// ```
1217    ///
1218    /// Stopping after an initial [`None`]:
1219    ///
1220    /// ```
1221    /// let a = [0, 1, 2, -3, 4, 5, -6];
1222    ///
1223    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1224    /// let vec: Vec<_> = iter.collect();
1225    ///
1226    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1227    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1228    /// assert_eq!(vec, [0, 1, 2]);
1229    /// ```
1230    ///
1231    /// Because `map_while()` needs to look at the value in order to see if it
1232    /// should be included or not, consuming iterators will see that it is
1233    /// removed:
1234    ///
1235    /// ```
1236    /// let a = [1, 2, -3, 4];
1237    /// let mut iter = a.into_iter();
1238    ///
1239    /// let result: Vec<u32> = iter.by_ref()
1240    ///                            .map_while(|n| u32::try_from(n).ok())
1241    ///                            .collect();
1242    ///
1243    /// assert_eq!(result, [1, 2]);
1244    ///
1245    /// let result: Vec<i32> = iter.collect();
1246    ///
1247    /// assert_eq!(result, [4]);
1248    /// ```
1249    ///
1250    /// The `-3` is no longer there, because it was consumed in order to see if
1251    /// the iteration should stop, but wasn't placed back into the iterator.
1252    ///
1253    /// Note that unlike [`take_while`] this iterator is **not** fused.
1254    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1255    /// If you need a fused iterator, use [`fuse`].
1256    ///
1257    /// [`fuse`]: Iterator::fuse
1258    #[inline]
1259    #[stable(feature = "iter_map_while", since = "1.57.0")]
1260    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1261    where
1262        Self: Sized,
1263        P: FnMut(Self::Item) -> Option<B>,
1264    {
1265        MapWhile::new(self, predicate)
1266    }
1267
1268    /// Creates an iterator that skips the first `n` elements.
1269    ///
1270    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1271    /// iterator is reached (whichever happens first). After that, all the remaining
1272    /// elements are yielded. In particular, if the original iterator is too short,
1273    /// then the returned iterator is empty.
1274    ///
1275    /// Rather than overriding this method directly, instead override the `nth` method.
1276    ///
1277    /// # Examples
1278    ///
1279    /// ```
1280    /// let a = [1, 2, 3];
1281    ///
1282    /// let mut iter = a.into_iter().skip(2);
1283    ///
1284    /// assert_eq!(iter.next(), Some(3));
1285    /// assert_eq!(iter.next(), None);
1286    /// ```
1287    #[inline]
1288    #[stable(feature = "rust1", since = "1.0.0")]
1289    fn skip(self, n: usize) -> Skip<Self>
1290    where
1291        Self: Sized,
1292    {
1293        Skip::new(self, n)
1294    }
1295
1296    /// Creates an iterator that yields the first `n` elements, or fewer
1297    /// if the underlying iterator ends sooner.
1298    ///
1299    /// `take(n)` yields elements until `n` elements are yielded or the end of
1300    /// the iterator is reached (whichever happens first).
1301    /// The returned iterator is a prefix of length `n` if the original iterator
1302    /// contains at least `n` elements, otherwise it contains all of the
1303    /// (fewer than `n`) elements of the original iterator.
1304    ///
1305    /// # Examples
1306    ///
1307    /// Basic usage:
1308    ///
1309    /// ```
1310    /// let a = [1, 2, 3];
1311    ///
1312    /// let mut iter = a.into_iter().take(2);
1313    ///
1314    /// assert_eq!(iter.next(), Some(1));
1315    /// assert_eq!(iter.next(), Some(2));
1316    /// assert_eq!(iter.next(), None);
1317    /// ```
1318    ///
1319    /// `take()` is often used with an infinite iterator, to make it finite:
1320    ///
1321    /// ```
1322    /// let mut iter = (0..).take(3);
1323    ///
1324    /// assert_eq!(iter.next(), Some(0));
1325    /// assert_eq!(iter.next(), Some(1));
1326    /// assert_eq!(iter.next(), Some(2));
1327    /// assert_eq!(iter.next(), None);
1328    /// ```
1329    ///
1330    /// If less than `n` elements are available,
1331    /// `take` will limit itself to the size of the underlying iterator:
1332    ///
1333    /// ```
1334    /// let v = [1, 2];
1335    /// let mut iter = v.into_iter().take(5);
1336    /// assert_eq!(iter.next(), Some(1));
1337    /// assert_eq!(iter.next(), Some(2));
1338    /// assert_eq!(iter.next(), None);
1339    /// ```
1340    ///
1341    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1342    /// continue using the original iterator:
1343    ///
1344    /// ```
1345    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1346    ///
1347    /// // Take the first two words.
1348    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1349    /// assert_eq!(hello_world, vec!["hello", "world"]);
1350    ///
1351    /// // Collect the rest of the words.
1352    /// // We can only do this because we used `by_ref` earlier.
1353    /// let of_rust: Vec<_> = words.collect();
1354    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1355    /// ```
1356    ///
1357    /// [`by_ref`]: Iterator::by_ref
1358    #[doc(alias = "limit")]
1359    #[inline]
1360    #[stable(feature = "rust1", since = "1.0.0")]
1361    fn take(self, n: usize) -> Take<Self>
1362    where
1363        Self: Sized,
1364    {
1365        Take::new(self, n)
1366    }
1367
1368    /// An iterator adapter which, like [`fold`], holds internal state, but
1369    /// unlike [`fold`], produces a new iterator.
1370    ///
1371    /// [`fold`]: Iterator::fold
1372    ///
1373    /// `scan()` takes two arguments: an initial value which seeds the internal
1374    /// state, and a closure with two arguments, the first being a mutable
1375    /// reference to the internal state and the second an iterator element.
1376    /// The closure can assign to the internal state to share state between
1377    /// iterations.
1378    ///
1379    /// On iteration, the closure will be applied to each element of the
1380    /// iterator and the return value from the closure, an [`Option`], is
1381    /// returned by the `next` method. Thus the closure can return
1382    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1383    ///
1384    /// # Examples
1385    ///
1386    /// ```
1387    /// let a = [1, 2, 3, 4];
1388    ///
1389    /// let mut iter = a.into_iter().scan(1, |state, x| {
1390    ///     // each iteration, we'll multiply the state by the element ...
1391    ///     *state = *state * x;
1392    ///
1393    ///     // ... and terminate if the state exceeds 6
1394    ///     if *state > 6 {
1395    ///         return None;
1396    ///     }
1397    ///     // ... else yield the negation of the state
1398    ///     Some(-*state)
1399    /// });
1400    ///
1401    /// assert_eq!(iter.next(), Some(-1));
1402    /// assert_eq!(iter.next(), Some(-2));
1403    /// assert_eq!(iter.next(), Some(-6));
1404    /// assert_eq!(iter.next(), None);
1405    /// ```
1406    #[inline]
1407    #[stable(feature = "rust1", since = "1.0.0")]
1408    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1409    where
1410        Self: Sized,
1411        F: FnMut(&mut St, Self::Item) -> Option<B>,
1412    {
1413        Scan::new(self, initial_state, f)
1414    }
1415
1416    /// Creates an iterator that works like map, but flattens nested structure.
1417    ///
1418    /// The [`map`] adapter is very useful, but only when the closure
1419    /// argument produces values. If it produces an iterator instead, there's
1420    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1421    /// on its own.
1422    ///
1423    /// You can think of `flat_map(f)` as the semantic equivalent
1424    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1425    ///
1426    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1427    /// one item for each element, and `flat_map()`'s closure returns an
1428    /// iterator for each element.
1429    ///
1430    /// [`map`]: Iterator::map
1431    /// [`flatten`]: Iterator::flatten
1432    ///
1433    /// # Examples
1434    ///
1435    /// ```
1436    /// let words = ["alpha", "beta", "gamma"];
1437    ///
1438    /// // chars() returns an iterator
1439    /// let merged: String = words.iter()
1440    ///                           .flat_map(|s| s.chars())
1441    ///                           .collect();
1442    /// assert_eq!(merged, "alphabetagamma");
1443    /// ```
1444    #[inline]
1445    #[stable(feature = "rust1", since = "1.0.0")]
1446    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1447    where
1448        Self: Sized,
1449        U: IntoIterator,
1450        F: FnMut(Self::Item) -> U,
1451    {
1452        FlatMap::new(self, f)
1453    }
1454
1455    /// Creates an iterator that flattens nested structure.
1456    ///
1457    /// This is useful when you have an iterator of iterators or an iterator of
1458    /// things that can be turned into iterators and you want to remove one
1459    /// level of indirection.
1460    ///
1461    /// # Examples
1462    ///
1463    /// Basic usage:
1464    ///
1465    /// ```
1466    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1467    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1468    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1469    /// ```
1470    ///
1471    /// Mapping and then flattening:
1472    ///
1473    /// ```
1474    /// let words = ["alpha", "beta", "gamma"];
1475    ///
1476    /// // chars() returns an iterator
1477    /// let merged: String = words.iter()
1478    ///                           .map(|s| s.chars())
1479    ///                           .flatten()
1480    ///                           .collect();
1481    /// assert_eq!(merged, "alphabetagamma");
1482    /// ```
1483    ///
1484    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1485    /// in this case since it conveys intent more clearly:
1486    ///
1487    /// ```
1488    /// let words = ["alpha", "beta", "gamma"];
1489    ///
1490    /// // chars() returns an iterator
1491    /// let merged: String = words.iter()
1492    ///                           .flat_map(|s| s.chars())
1493    ///                           .collect();
1494    /// assert_eq!(merged, "alphabetagamma");
1495    /// ```
1496    ///
1497    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1498    ///
1499    /// ```
1500    /// let options = vec![Some(123), Some(321), None, Some(231)];
1501    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1502    /// assert_eq!(flattened_options, [123, 321, 231]);
1503    ///
1504    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1505    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1506    /// assert_eq!(flattened_results, [123, 321, 231]);
1507    /// ```
1508    ///
1509    /// Flattening only removes one level of nesting at a time:
1510    ///
1511    /// ```
1512    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1513    ///
1514    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1515    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1516    ///
1517    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1518    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1519    /// ```
1520    ///
1521    /// Here we see that `flatten()` does not perform a "deep" flatten.
1522    /// Instead, only one level of nesting is removed. That is, if you
1523    /// `flatten()` a three-dimensional array, the result will be
1524    /// two-dimensional and not one-dimensional. To get a one-dimensional
1525    /// structure, you have to `flatten()` again.
1526    ///
1527    /// [`flat_map()`]: Iterator::flat_map
1528    #[inline]
1529    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1530    fn flatten(self) -> Flatten<Self>
1531    where
1532        Self: Sized,
1533        Self::Item: IntoIterator,
1534    {
1535        Flatten::new(self)
1536    }
1537
1538    /// Calls the given function `f` for each contiguous window of size `N` over
1539    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1540    /// the windows during mapping overlap as well.
1541    ///
1542    /// In the following example, the closure is called three times with the
1543    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1544    ///
1545    /// ```
1546    /// #![feature(iter_map_windows)]
1547    ///
1548    /// let strings = "abcd".chars()
1549    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1550    ///     .collect::<Vec<String>>();
1551    ///
1552    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1553    /// ```
1554    ///
1555    /// Note that the const parameter `N` is usually inferred by the
1556    /// destructured argument in the closure.
1557    ///
1558    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1559    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1560    /// empty iterator.
1561    ///
1562    /// The returned iterator implements [`FusedIterator`], because once `self`
1563    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1564    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1565    /// should be fused.
1566    ///
1567    /// [`slice::windows()`]: slice::windows
1568    /// [`FusedIterator`]: crate::iter::FusedIterator
1569    ///
1570    /// # Panics
1571    ///
1572    /// Panics if `N` is zero. This check will most probably get changed to a
1573    /// compile time error before this method gets stabilized.
1574    ///
1575    /// ```should_panic
1576    /// #![feature(iter_map_windows)]
1577    ///
1578    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1579    /// ```
1580    ///
1581    /// # Examples
1582    ///
1583    /// Building the sums of neighboring numbers.
1584    ///
1585    /// ```
1586    /// #![feature(iter_map_windows)]
1587    ///
1588    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1589    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1590    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1591    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1592    /// assert_eq!(it.next(), None);
1593    /// ```
1594    ///
1595    /// Since the elements in the following example implement `Copy`, we can
1596    /// just copy the array and get an iterator over the windows.
1597    ///
1598    /// ```
1599    /// #![feature(iter_map_windows)]
1600    ///
1601    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1602    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1603    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1604    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1605    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1606    /// assert_eq!(it.next(), None);
1607    /// ```
1608    ///
1609    /// You can also use this function to check the sortedness of an iterator.
1610    /// For the simple case, rather use [`Iterator::is_sorted`].
1611    ///
1612    /// ```
1613    /// #![feature(iter_map_windows)]
1614    ///
1615    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1616    ///     .map_windows(|[a, b]| a <= b);
1617    ///
1618    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1619    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1620    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1621    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1622    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1623    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1624    /// assert_eq!(it.next(), None);
1625    /// ```
1626    ///
1627    /// For non-fused iterators, they are fused after `map_windows`.
1628    ///
1629    /// ```
1630    /// #![feature(iter_map_windows)]
1631    ///
1632    /// #[derive(Default)]
1633    /// struct NonFusedIterator {
1634    ///     state: i32,
1635    /// }
1636    ///
1637    /// impl Iterator for NonFusedIterator {
1638    ///     type Item = i32;
1639    ///
1640    ///     fn next(&mut self) -> Option<i32> {
1641    ///         let val = self.state;
1642    ///         self.state = self.state + 1;
1643    ///
1644    ///         // yields `0..5` first, then only even numbers since `6..`.
1645    ///         if val < 5 || val % 2 == 0 {
1646    ///             Some(val)
1647    ///         } else {
1648    ///             None
1649    ///         }
1650    ///     }
1651    /// }
1652    ///
1653    ///
1654    /// let mut iter = NonFusedIterator::default();
1655    ///
1656    /// // yields 0..5 first.
1657    /// assert_eq!(iter.next(), Some(0));
1658    /// assert_eq!(iter.next(), Some(1));
1659    /// assert_eq!(iter.next(), Some(2));
1660    /// assert_eq!(iter.next(), Some(3));
1661    /// assert_eq!(iter.next(), Some(4));
1662    /// // then we can see our iterator going back and forth
1663    /// assert_eq!(iter.next(), None);
1664    /// assert_eq!(iter.next(), Some(6));
1665    /// assert_eq!(iter.next(), None);
1666    /// assert_eq!(iter.next(), Some(8));
1667    /// assert_eq!(iter.next(), None);
1668    ///
1669    /// // however, with `.map_windows()`, it is fused.
1670    /// let mut iter = NonFusedIterator::default()
1671    ///     .map_windows(|arr: &[_; 2]| *arr);
1672    ///
1673    /// assert_eq!(iter.next(), Some([0, 1]));
1674    /// assert_eq!(iter.next(), Some([1, 2]));
1675    /// assert_eq!(iter.next(), Some([2, 3]));
1676    /// assert_eq!(iter.next(), Some([3, 4]));
1677    /// assert_eq!(iter.next(), None);
1678    ///
1679    /// // it will always return `None` after the first time.
1680    /// assert_eq!(iter.next(), None);
1681    /// assert_eq!(iter.next(), None);
1682    /// assert_eq!(iter.next(), None);
1683    /// ```
1684    #[inline]
1685    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1686    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1687    where
1688        Self: Sized,
1689        F: FnMut(&[Self::Item; N]) -> R,
1690    {
1691        MapWindows::new(self, f)
1692    }
1693
1694    /// Creates an iterator which ends after the first [`None`].
1695    ///
1696    /// After an iterator returns [`None`], future calls may or may not yield
1697    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1698    /// [`None`] is given, it will always return [`None`] forever.
1699    ///
1700    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1701    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1702    /// if the [`FusedIterator`] trait is improperly implemented.
1703    ///
1704    /// [`Some(T)`]: Some
1705    /// [`FusedIterator`]: crate::iter::FusedIterator
1706    ///
1707    /// # Examples
1708    ///
1709    /// ```
1710    /// // an iterator which alternates between Some and None
1711    /// struct Alternate {
1712    ///     state: i32,
1713    /// }
1714    ///
1715    /// impl Iterator for Alternate {
1716    ///     type Item = i32;
1717    ///
1718    ///     fn next(&mut self) -> Option<i32> {
1719    ///         let val = self.state;
1720    ///         self.state = self.state + 1;
1721    ///
1722    ///         // if it's even, Some(i32), else None
1723    ///         (val % 2 == 0).then_some(val)
1724    ///     }
1725    /// }
1726    ///
1727    /// let mut iter = Alternate { state: 0 };
1728    ///
1729    /// // we can see our iterator going back and forth
1730    /// assert_eq!(iter.next(), Some(0));
1731    /// assert_eq!(iter.next(), None);
1732    /// assert_eq!(iter.next(), Some(2));
1733    /// assert_eq!(iter.next(), None);
1734    ///
1735    /// // however, once we fuse it...
1736    /// let mut iter = iter.fuse();
1737    ///
1738    /// assert_eq!(iter.next(), Some(4));
1739    /// assert_eq!(iter.next(), None);
1740    ///
1741    /// // it will always return `None` after the first time.
1742    /// assert_eq!(iter.next(), None);
1743    /// assert_eq!(iter.next(), None);
1744    /// assert_eq!(iter.next(), None);
1745    /// ```
1746    #[inline]
1747    #[stable(feature = "rust1", since = "1.0.0")]
1748    fn fuse(self) -> Fuse<Self>
1749    where
1750        Self: Sized,
1751    {
1752        Fuse::new(self)
1753    }
1754
1755    /// Does something with each element of an iterator, passing the value on.
1756    ///
1757    /// When using iterators, you'll often chain several of them together.
1758    /// While working on such code, you might want to check out what's
1759    /// happening at various parts in the pipeline. To do that, insert
1760    /// a call to `inspect()`.
1761    ///
1762    /// It's more common for `inspect()` to be used as a debugging tool than to
1763    /// exist in your final code, but applications may find it useful in certain
1764    /// situations when errors need to be logged before being discarded.
1765    ///
1766    /// # Examples
1767    ///
1768    /// Basic usage:
1769    ///
1770    /// ```
1771    /// let a = [1, 4, 2, 3];
1772    ///
1773    /// // this iterator sequence is complex.
1774    /// let sum = a.iter()
1775    ///     .cloned()
1776    ///     .filter(|x| x % 2 == 0)
1777    ///     .fold(0, |sum, i| sum + i);
1778    ///
1779    /// println!("{sum}");
1780    ///
1781    /// // let's add some inspect() calls to investigate what's happening
1782    /// let sum = a.iter()
1783    ///     .cloned()
1784    ///     .inspect(|x| println!("about to filter: {x}"))
1785    ///     .filter(|x| x % 2 == 0)
1786    ///     .inspect(|x| println!("made it through filter: {x}"))
1787    ///     .fold(0, |sum, i| sum + i);
1788    ///
1789    /// println!("{sum}");
1790    /// ```
1791    ///
1792    /// This will print:
1793    ///
1794    /// ```text
1795    /// 6
1796    /// about to filter: 1
1797    /// about to filter: 4
1798    /// made it through filter: 4
1799    /// about to filter: 2
1800    /// made it through filter: 2
1801    /// about to filter: 3
1802    /// 6
1803    /// ```
1804    ///
1805    /// Logging errors before discarding them:
1806    ///
1807    /// ```
1808    /// let lines = ["1", "2", "a"];
1809    ///
1810    /// let sum: i32 = lines
1811    ///     .iter()
1812    ///     .map(|line| line.parse::<i32>())
1813    ///     .inspect(|num| {
1814    ///         if let Err(ref e) = *num {
1815    ///             println!("Parsing error: {e}");
1816    ///         }
1817    ///     })
1818    ///     .filter_map(Result::ok)
1819    ///     .sum();
1820    ///
1821    /// println!("Sum: {sum}");
1822    /// ```
1823    ///
1824    /// This will print:
1825    ///
1826    /// ```text
1827    /// Parsing error: invalid digit found in string
1828    /// Sum: 3
1829    /// ```
1830    #[inline]
1831    #[stable(feature = "rust1", since = "1.0.0")]
1832    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1833    where
1834        Self: Sized,
1835        F: FnMut(&Self::Item),
1836    {
1837        Inspect::new(self, f)
1838    }
1839
1840    /// Creates a "by reference" adapter for this instance of `Iterator`.
1841    ///
1842    /// Consuming method calls (direct or indirect calls to `next`)
1843    /// on the "by reference" adapter will consume the original iterator,
1844    /// but ownership-taking methods (those with a `self` parameter)
1845    /// only take ownership of the "by reference" iterator.
1846    ///
1847    /// This is useful for applying ownership-taking methods
1848    /// (such as `take` in the example below)
1849    /// without giving up ownership of the original iterator,
1850    /// so you can use the original iterator afterwards.
1851    ///
1852    /// Uses [impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1853    ///
1854    /// # Examples
1855    ///
1856    /// ```
1857    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1858    ///
1859    /// // Take the first two words.
1860    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1861    /// assert_eq!(hello_world, vec!["hello", "world"]);
1862    ///
1863    /// // Collect the rest of the words.
1864    /// // We can only do this because we used `by_ref` earlier.
1865    /// let of_rust: Vec<_> = words.collect();
1866    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1867    /// ```
1868    #[stable(feature = "rust1", since = "1.0.0")]
1869    fn by_ref(&mut self) -> &mut Self
1870    where
1871        Self: Sized,
1872    {
1873        self
1874    }
1875
1876    /// Transforms an iterator into a collection.
1877    ///
1878    /// `collect()` can take anything iterable, and turn it into a relevant
1879    /// collection. This is one of the more powerful methods in the standard
1880    /// library, used in a variety of contexts.
1881    ///
1882    /// The most basic pattern in which `collect()` is used is to turn one
1883    /// collection into another. You take a collection, call [`iter`] on it,
1884    /// do a bunch of transformations, and then `collect()` at the end.
1885    ///
1886    /// `collect()` can also create instances of types that are not typical
1887    /// collections. For example, a [`String`] can be built from [`char`]s,
1888    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1889    /// into `Result<Collection<T>, E>`. See the examples below for more.
1890    ///
1891    /// Because `collect()` is so general, it can cause problems with type
1892    /// inference. As such, `collect()` is one of the few times you'll see
1893    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1894    /// helps the inference algorithm understand specifically which collection
1895    /// you're trying to collect into.
1896    ///
1897    /// # Examples
1898    ///
1899    /// Basic usage:
1900    ///
1901    /// ```
1902    /// let a = [1, 2, 3];
1903    ///
1904    /// let doubled: Vec<i32> = a.iter()
1905    ///                          .map(|x| x * 2)
1906    ///                          .collect();
1907    ///
1908    /// assert_eq!(vec![2, 4, 6], doubled);
1909    /// ```
1910    ///
1911    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1912    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1913    ///
1914    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1915    ///
1916    /// ```
1917    /// use std::collections::VecDeque;
1918    ///
1919    /// let a = [1, 2, 3];
1920    ///
1921    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1922    ///
1923    /// assert_eq!(2, doubled[0]);
1924    /// assert_eq!(4, doubled[1]);
1925    /// assert_eq!(6, doubled[2]);
1926    /// ```
1927    ///
1928    /// Using the 'turbofish' instead of annotating `doubled`:
1929    ///
1930    /// ```
1931    /// let a = [1, 2, 3];
1932    ///
1933    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1934    ///
1935    /// assert_eq!(vec![2, 4, 6], doubled);
1936    /// ```
1937    ///
1938    /// Because `collect()` only cares about what you're collecting into, you can
1939    /// still use a partial type hint, `_`, with the turbofish:
1940    ///
1941    /// ```
1942    /// let a = [1, 2, 3];
1943    ///
1944    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
1945    ///
1946    /// assert_eq!(vec![2, 4, 6], doubled);
1947    /// ```
1948    ///
1949    /// Using `collect()` to make a [`String`]:
1950    ///
1951    /// ```
1952    /// let chars = ['g', 'd', 'k', 'k', 'n'];
1953    ///
1954    /// let hello: String = chars.into_iter()
1955    ///     .map(|x| x as u8)
1956    ///     .map(|x| (x + 1) as char)
1957    ///     .collect();
1958    ///
1959    /// assert_eq!("hello", hello);
1960    /// ```
1961    ///
1962    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
1963    /// see if any of them failed:
1964    ///
1965    /// ```
1966    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
1967    ///
1968    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
1969    ///
1970    /// // gives us the first error
1971    /// assert_eq!(Err("nope"), result);
1972    ///
1973    /// let results = [Ok(1), Ok(3)];
1974    ///
1975    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
1976    ///
1977    /// // gives us the list of answers
1978    /// assert_eq!(Ok(vec![1, 3]), result);
1979    /// ```
1980    ///
1981    /// [`iter`]: Iterator::next
1982    /// [`String`]: ../../std/string/struct.String.html
1983    /// [`char`]: type@char
1984    #[inline]
1985    #[stable(feature = "rust1", since = "1.0.0")]
1986    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
1987    #[rustc_diagnostic_item = "iterator_collect_fn"]
1988    fn collect<B: FromIterator<Self::Item>>(self) -> B
1989    where
1990        Self: Sized,
1991    {
1992        // This is too aggressive to turn on for everything all the time, but PR#137908
1993        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
1994        // so this will help catch such things in debug-assertions-std runners,
1995        // even if users won't actually ever see it.
1996        if cfg!(debug_assertions) {
1997            let hint = self.size_hint();
1998            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
1999        }
2000
2001        FromIterator::from_iter(self)
2002    }
2003
2004    /// Fallibly transforms an iterator into a collection, short circuiting if
2005    /// a failure is encountered.
2006    ///
2007    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2008    /// conversions during collection. Its main use case is simplifying conversions from
2009    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2010    /// types (e.g. [`Result`]).
2011    ///
2012    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2013    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2014    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2015    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2016    ///
2017    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2018    /// may continue to be used, in which case it will continue iterating starting after the element that
2019    /// triggered the failure. See the last example below for an example of how this works.
2020    ///
2021    /// # Examples
2022    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2023    /// ```
2024    /// #![feature(iterator_try_collect)]
2025    ///
2026    /// let u = vec![Some(1), Some(2), Some(3)];
2027    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2028    /// assert_eq!(v, Some(vec![1, 2, 3]));
2029    /// ```
2030    ///
2031    /// Failing to collect in the same way:
2032    /// ```
2033    /// #![feature(iterator_try_collect)]
2034    ///
2035    /// let u = vec![Some(1), Some(2), None, Some(3)];
2036    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2037    /// assert_eq!(v, None);
2038    /// ```
2039    ///
2040    /// A similar example, but with `Result`:
2041    /// ```
2042    /// #![feature(iterator_try_collect)]
2043    ///
2044    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2045    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2046    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2047    ///
2048    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2049    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2050    /// assert_eq!(v, Err(()));
2051    /// ```
2052    ///
2053    /// Finally, even [`ControlFlow`] works, despite the fact that it
2054    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2055    /// continue to be used, even if a failure is encountered:
2056    ///
2057    /// ```
2058    /// #![feature(iterator_try_collect)]
2059    ///
2060    /// use core::ops::ControlFlow::{Break, Continue};
2061    ///
2062    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2063    /// let mut it = u.into_iter();
2064    ///
2065    /// let v = it.try_collect::<Vec<_>>();
2066    /// assert_eq!(v, Break(3));
2067    ///
2068    /// let v = it.try_collect::<Vec<_>>();
2069    /// assert_eq!(v, Continue(vec![4, 5]));
2070    /// ```
2071    ///
2072    /// [`collect`]: Iterator::collect
2073    #[inline]
2074    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2075    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2076    where
2077        Self: Sized,
2078        Self::Item: Try<Residual: Residual<B>>,
2079        B: FromIterator<<Self::Item as Try>::Output>,
2080    {
2081        try_process(ByRefSized(self), |i| i.collect())
2082    }
2083
2084    /// Collects all the items from an iterator into a collection.
2085    ///
2086    /// This method consumes the iterator and adds all its items to the
2087    /// passed collection. The collection is then returned, so the call chain
2088    /// can be continued.
2089    ///
2090    /// This is useful when you already have a collection and want to add
2091    /// the iterator items to it.
2092    ///
2093    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2094    /// but instead of being called on a collection, it's called on an iterator.
2095    ///
2096    /// # Examples
2097    ///
2098    /// Basic usage:
2099    ///
2100    /// ```
2101    /// #![feature(iter_collect_into)]
2102    ///
2103    /// let a = [1, 2, 3];
2104    /// let mut vec: Vec::<i32> = vec![0, 1];
2105    ///
2106    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2107    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2108    ///
2109    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2110    /// ```
2111    ///
2112    /// `Vec` can have a manual set capacity to avoid reallocating it:
2113    ///
2114    /// ```
2115    /// #![feature(iter_collect_into)]
2116    ///
2117    /// let a = [1, 2, 3];
2118    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2119    ///
2120    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2121    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2122    ///
2123    /// assert_eq!(6, vec.capacity());
2124    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2125    /// ```
2126    ///
2127    /// The returned mutable reference can be used to continue the call chain:
2128    ///
2129    /// ```
2130    /// #![feature(iter_collect_into)]
2131    ///
2132    /// let a = [1, 2, 3];
2133    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2134    ///
2135    /// let count = a.iter().collect_into(&mut vec).iter().count();
2136    ///
2137    /// assert_eq!(count, vec.len());
2138    /// assert_eq!(vec, vec![1, 2, 3]);
2139    ///
2140    /// let count = a.iter().collect_into(&mut vec).iter().count();
2141    ///
2142    /// assert_eq!(count, vec.len());
2143    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2144    /// ```
2145    #[inline]
2146    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2147    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2148    where
2149        Self: Sized,
2150    {
2151        collection.extend(self);
2152        collection
2153    }
2154
2155    /// Consumes an iterator, creating two collections from it.
2156    ///
2157    /// The predicate passed to `partition()` can return `true`, or `false`.
2158    /// `partition()` returns a pair, all of the elements for which it returned
2159    /// `true`, and all of the elements for which it returned `false`.
2160    ///
2161    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2162    ///
2163    /// [`is_partitioned()`]: Iterator::is_partitioned
2164    /// [`partition_in_place()`]: Iterator::partition_in_place
2165    ///
2166    /// # Examples
2167    ///
2168    /// ```
2169    /// let a = [1, 2, 3];
2170    ///
2171    /// let (even, odd): (Vec<_>, Vec<_>) = a
2172    ///     .into_iter()
2173    ///     .partition(|n| n % 2 == 0);
2174    ///
2175    /// assert_eq!(even, [2]);
2176    /// assert_eq!(odd, [1, 3]);
2177    /// ```
2178    #[stable(feature = "rust1", since = "1.0.0")]
2179    fn partition<B, F>(self, f: F) -> (B, B)
2180    where
2181        Self: Sized,
2182        B: Default + Extend<Self::Item>,
2183        F: FnMut(&Self::Item) -> bool,
2184    {
2185        #[inline]
2186        fn extend<'a, T, B: Extend<T>>(
2187            mut f: impl FnMut(&T) -> bool + 'a,
2188            left: &'a mut B,
2189            right: &'a mut B,
2190        ) -> impl FnMut((), T) + 'a {
2191            move |(), x| {
2192                if f(&x) {
2193                    left.extend_one(x);
2194                } else {
2195                    right.extend_one(x);
2196                }
2197            }
2198        }
2199
2200        let mut left: B = Default::default();
2201        let mut right: B = Default::default();
2202
2203        self.fold((), extend(f, &mut left, &mut right));
2204
2205        (left, right)
2206    }
2207
2208    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2209    /// such that all those that return `true` precede all those that return `false`.
2210    /// Returns the number of `true` elements found.
2211    ///
2212    /// The relative order of partitioned items is not maintained.
2213    ///
2214    /// # Current implementation
2215    ///
2216    /// The current algorithm tries to find the first element for which the predicate evaluates
2217    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2218    ///
2219    /// Time complexity: *O*(*n*)
2220    ///
2221    /// See also [`is_partitioned()`] and [`partition()`].
2222    ///
2223    /// [`is_partitioned()`]: Iterator::is_partitioned
2224    /// [`partition()`]: Iterator::partition
2225    ///
2226    /// # Examples
2227    ///
2228    /// ```
2229    /// #![feature(iter_partition_in_place)]
2230    ///
2231    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2232    ///
2233    /// // Partition in-place between evens and odds
2234    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2235    ///
2236    /// assert_eq!(i, 3);
2237    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2238    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2239    /// ```
2240    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2241    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2242    where
2243        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2244        P: FnMut(&T) -> bool,
2245    {
2246        // FIXME: should we worry about the count overflowing? The only way to have more than
2247        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2248
2249        // These closure "factory" functions exist to avoid genericity in `Self`.
2250
2251        #[inline]
2252        fn is_false<'a, T>(
2253            predicate: &'a mut impl FnMut(&T) -> bool,
2254            true_count: &'a mut usize,
2255        ) -> impl FnMut(&&mut T) -> bool + 'a {
2256            move |x| {
2257                let p = predicate(&**x);
2258                *true_count += p as usize;
2259                !p
2260            }
2261        }
2262
2263        #[inline]
2264        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2265            move |x| predicate(&**x)
2266        }
2267
2268        // Repeatedly find the first `false` and swap it with the last `true`.
2269        let mut true_count = 0;
2270        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2271            if let Some(tail) = self.rfind(is_true(predicate)) {
2272                crate::mem::swap(head, tail);
2273                true_count += 1;
2274            } else {
2275                break;
2276            }
2277        }
2278        true_count
2279    }
2280
2281    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2282    /// such that all those that return `true` precede all those that return `false`.
2283    ///
2284    /// See also [`partition()`] and [`partition_in_place()`].
2285    ///
2286    /// [`partition()`]: Iterator::partition
2287    /// [`partition_in_place()`]: Iterator::partition_in_place
2288    ///
2289    /// # Examples
2290    ///
2291    /// ```
2292    /// #![feature(iter_is_partitioned)]
2293    ///
2294    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2295    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2296    /// ```
2297    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2298    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2299    where
2300        Self: Sized,
2301        P: FnMut(Self::Item) -> bool,
2302    {
2303        // Either all items test `true`, or the first clause stops at `false`
2304        // and we check that there are no more `true` items after that.
2305        self.all(&mut predicate) || !self.any(predicate)
2306    }
2307
2308    /// An iterator method that applies a function as long as it returns
2309    /// successfully, producing a single, final value.
2310    ///
2311    /// `try_fold()` takes two arguments: an initial value, and a closure with
2312    /// two arguments: an 'accumulator', and an element. The closure either
2313    /// returns successfully, with the value that the accumulator should have
2314    /// for the next iteration, or it returns failure, with an error value that
2315    /// is propagated back to the caller immediately (short-circuiting).
2316    ///
2317    /// The initial value is the value the accumulator will have on the first
2318    /// call. If applying the closure succeeded against every element of the
2319    /// iterator, `try_fold()` returns the final accumulator as success.
2320    ///
2321    /// Folding is useful whenever you have a collection of something, and want
2322    /// to produce a single value from it.
2323    ///
2324    /// # Note to Implementors
2325    ///
2326    /// Several of the other (forward) methods have default implementations in
2327    /// terms of this one, so try to implement this explicitly if it can
2328    /// do something better than the default `for` loop implementation.
2329    ///
2330    /// In particular, try to have this call `try_fold()` on the internal parts
2331    /// from which this iterator is composed. If multiple calls are needed,
2332    /// the `?` operator may be convenient for chaining the accumulator value
2333    /// along, but beware any invariants that need to be upheld before those
2334    /// early returns. This is a `&mut self` method, so iteration needs to be
2335    /// resumable after hitting an error here.
2336    ///
2337    /// # Examples
2338    ///
2339    /// Basic usage:
2340    ///
2341    /// ```
2342    /// let a = [1, 2, 3];
2343    ///
2344    /// // the checked sum of all of the elements of the array
2345    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2346    ///
2347    /// assert_eq!(sum, Some(6));
2348    /// ```
2349    ///
2350    /// Short-circuiting:
2351    ///
2352    /// ```
2353    /// let a = [10, 20, 30, 100, 40, 50];
2354    /// let mut iter = a.into_iter();
2355    ///
2356    /// // This sum overflows when adding the 100 element
2357    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2358    /// assert_eq!(sum, None);
2359    ///
2360    /// // Because it short-circuited, the remaining elements are still
2361    /// // available through the iterator.
2362    /// assert_eq!(iter.len(), 2);
2363    /// assert_eq!(iter.next(), Some(40));
2364    /// ```
2365    ///
2366    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2367    /// a similar idea:
2368    ///
2369    /// ```
2370    /// use std::ops::ControlFlow;
2371    ///
2372    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2373    ///     if let Some(next) = prev.checked_add(x) {
2374    ///         ControlFlow::Continue(next)
2375    ///     } else {
2376    ///         ControlFlow::Break(prev)
2377    ///     }
2378    /// });
2379    /// assert_eq!(triangular, ControlFlow::Break(120));
2380    ///
2381    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2382    ///     if let Some(next) = prev.checked_add(x) {
2383    ///         ControlFlow::Continue(next)
2384    ///     } else {
2385    ///         ControlFlow::Break(prev)
2386    ///     }
2387    /// });
2388    /// assert_eq!(triangular, ControlFlow::Continue(435));
2389    /// ```
2390    #[inline]
2391    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2392    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2393    where
2394        Self: Sized,
2395        F: FnMut(B, Self::Item) -> R,
2396        R: Try<Output = B>,
2397    {
2398        let mut accum = init;
2399        while let Some(x) = self.next() {
2400            accum = f(accum, x)?;
2401        }
2402        try { accum }
2403    }
2404
2405    /// An iterator method that applies a fallible function to each item in the
2406    /// iterator, stopping at the first error and returning that error.
2407    ///
2408    /// This can also be thought of as the fallible form of [`for_each()`]
2409    /// or as the stateless version of [`try_fold()`].
2410    ///
2411    /// [`for_each()`]: Iterator::for_each
2412    /// [`try_fold()`]: Iterator::try_fold
2413    ///
2414    /// # Examples
2415    ///
2416    /// ```
2417    /// use std::fs::rename;
2418    /// use std::io::{stdout, Write};
2419    /// use std::path::Path;
2420    ///
2421    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2422    ///
2423    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2424    /// assert!(res.is_ok());
2425    ///
2426    /// let mut it = data.iter().cloned();
2427    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2428    /// assert!(res.is_err());
2429    /// // It short-circuited, so the remaining items are still in the iterator:
2430    /// assert_eq!(it.next(), Some("stale_bread.json"));
2431    /// ```
2432    ///
2433    /// The [`ControlFlow`] type can be used with this method for the situations
2434    /// in which you'd use `break` and `continue` in a normal loop:
2435    ///
2436    /// ```
2437    /// use std::ops::ControlFlow;
2438    ///
2439    /// let r = (2..100).try_for_each(|x| {
2440    ///     if 323 % x == 0 {
2441    ///         return ControlFlow::Break(x)
2442    ///     }
2443    ///
2444    ///     ControlFlow::Continue(())
2445    /// });
2446    /// assert_eq!(r, ControlFlow::Break(17));
2447    /// ```
2448    #[inline]
2449    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2450    fn try_for_each<F, R>(&mut self, f: F) -> R
2451    where
2452        Self: Sized,
2453        F: FnMut(Self::Item) -> R,
2454        R: Try<Output = ()>,
2455    {
2456        #[inline]
2457        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2458            move |(), x| f(x)
2459        }
2460
2461        self.try_fold((), call(f))
2462    }
2463
2464    /// Folds every element into an accumulator by applying an operation,
2465    /// returning the final result.
2466    ///
2467    /// `fold()` takes two arguments: an initial value, and a closure with two
2468    /// arguments: an 'accumulator', and an element. The closure returns the value that
2469    /// the accumulator should have for the next iteration.
2470    ///
2471    /// The initial value is the value the accumulator will have on the first
2472    /// call.
2473    ///
2474    /// After applying this closure to every element of the iterator, `fold()`
2475    /// returns the accumulator.
2476    ///
2477    /// This operation is sometimes called 'reduce' or 'inject'.
2478    ///
2479    /// Folding is useful whenever you have a collection of something, and want
2480    /// to produce a single value from it.
2481    ///
2482    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2483    /// might not terminate for infinite iterators, even on traits for which a
2484    /// result is determinable in finite time.
2485    ///
2486    /// Note: [`reduce()`] can be used to use the first element as the initial
2487    /// value, if the accumulator type and item type is the same.
2488    ///
2489    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2490    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2491    /// operators like `-` the order will affect the final result.
2492    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2493    ///
2494    /// # Note to Implementors
2495    ///
2496    /// Several of the other (forward) methods have default implementations in
2497    /// terms of this one, so try to implement this explicitly if it can
2498    /// do something better than the default `for` loop implementation.
2499    ///
2500    /// In particular, try to have this call `fold()` on the internal parts
2501    /// from which this iterator is composed.
2502    ///
2503    /// # Examples
2504    ///
2505    /// Basic usage:
2506    ///
2507    /// ```
2508    /// let a = [1, 2, 3];
2509    ///
2510    /// // the sum of all of the elements of the array
2511    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2512    ///
2513    /// assert_eq!(sum, 6);
2514    /// ```
2515    ///
2516    /// Let's walk through each step of the iteration here:
2517    ///
2518    /// | element | acc | x | result |
2519    /// |---------|-----|---|--------|
2520    /// |         | 0   |   |        |
2521    /// | 1       | 0   | 1 | 1      |
2522    /// | 2       | 1   | 2 | 3      |
2523    /// | 3       | 3   | 3 | 6      |
2524    ///
2525    /// And so, our final result, `6`.
2526    ///
2527    /// This example demonstrates the left-associative nature of `fold()`:
2528    /// it builds a string, starting with an initial value
2529    /// and continuing with each element from the front until the back:
2530    ///
2531    /// ```
2532    /// let numbers = [1, 2, 3, 4, 5];
2533    ///
2534    /// let zero = "0".to_string();
2535    ///
2536    /// let result = numbers.iter().fold(zero, |acc, &x| {
2537    ///     format!("({acc} + {x})")
2538    /// });
2539    ///
2540    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2541    /// ```
2542    /// It's common for people who haven't used iterators a lot to
2543    /// use a `for` loop with a list of things to build up a result. Those
2544    /// can be turned into `fold()`s:
2545    ///
2546    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2547    ///
2548    /// ```
2549    /// let numbers = [1, 2, 3, 4, 5];
2550    ///
2551    /// let mut result = 0;
2552    ///
2553    /// // for loop:
2554    /// for i in &numbers {
2555    ///     result = result + i;
2556    /// }
2557    ///
2558    /// // fold:
2559    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2560    ///
2561    /// // they're the same
2562    /// assert_eq!(result, result2);
2563    /// ```
2564    ///
2565    /// [`reduce()`]: Iterator::reduce
2566    #[doc(alias = "inject", alias = "foldl")]
2567    #[inline]
2568    #[stable(feature = "rust1", since = "1.0.0")]
2569    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2570    where
2571        Self: Sized,
2572        F: FnMut(B, Self::Item) -> B,
2573    {
2574        let mut accum = init;
2575        while let Some(x) = self.next() {
2576            accum = f(accum, x);
2577        }
2578        accum
2579    }
2580
2581    /// Reduces the elements to a single one, by repeatedly applying a reducing
2582    /// operation.
2583    ///
2584    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2585    /// result of the reduction.
2586    ///
2587    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2588    /// For iterators with at least one element, this is the same as [`fold()`]
2589    /// with the first element of the iterator as the initial accumulator value, folding
2590    /// every subsequent element into it.
2591    ///
2592    /// [`fold()`]: Iterator::fold
2593    ///
2594    /// # Example
2595    ///
2596    /// ```
2597    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2598    /// assert_eq!(reduced, 45);
2599    ///
2600    /// // Which is equivalent to doing it with `fold`:
2601    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2602    /// assert_eq!(reduced, folded);
2603    /// ```
2604    #[inline]
2605    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2606    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2607    where
2608        Self: Sized,
2609        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2610    {
2611        let first = self.next()?;
2612        Some(self.fold(first, f))
2613    }
2614
2615    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2616    /// closure returns a failure, the failure is propagated back to the caller immediately.
2617    ///
2618    /// The return type of this method depends on the return type of the closure. If the closure
2619    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2620    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2621    /// `Option<Option<Self::Item>>`.
2622    ///
2623    /// When called on an empty iterator, this function will return either `Some(None)` or
2624    /// `Ok(None)` depending on the type of the provided closure.
2625    ///
2626    /// For iterators with at least one element, this is essentially the same as calling
2627    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2628    ///
2629    /// [`try_fold()`]: Iterator::try_fold
2630    ///
2631    /// # Examples
2632    ///
2633    /// Safely calculate the sum of a series of numbers:
2634    ///
2635    /// ```
2636    /// #![feature(iterator_try_reduce)]
2637    ///
2638    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2639    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2640    /// assert_eq!(sum, Some(Some(58)));
2641    /// ```
2642    ///
2643    /// Determine when a reduction short circuited:
2644    ///
2645    /// ```
2646    /// #![feature(iterator_try_reduce)]
2647    ///
2648    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2649    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2650    /// assert_eq!(sum, None);
2651    /// ```
2652    ///
2653    /// Determine when a reduction was not performed because there are no elements:
2654    ///
2655    /// ```
2656    /// #![feature(iterator_try_reduce)]
2657    ///
2658    /// let numbers: Vec<usize> = Vec::new();
2659    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2660    /// assert_eq!(sum, Some(None));
2661    /// ```
2662    ///
2663    /// Use a [`Result`] instead of an [`Option`]:
2664    ///
2665    /// ```
2666    /// #![feature(iterator_try_reduce)]
2667    ///
2668    /// let numbers = vec!["1", "2", "3", "4", "5"];
2669    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2670    ///     numbers.into_iter().try_reduce(|x, y| {
2671    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2672    ///     });
2673    /// assert_eq!(max, Ok(Some("5")));
2674    /// ```
2675    #[inline]
2676    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2677    fn try_reduce<R>(
2678        &mut self,
2679        f: impl FnMut(Self::Item, Self::Item) -> R,
2680    ) -> ChangeOutputType<R, Option<R::Output>>
2681    where
2682        Self: Sized,
2683        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2684    {
2685        let first = match self.next() {
2686            Some(i) => i,
2687            None => return Try::from_output(None),
2688        };
2689
2690        match self.try_fold(first, f).branch() {
2691            ControlFlow::Break(r) => FromResidual::from_residual(r),
2692            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2693        }
2694    }
2695
2696    /// Tests if every element of the iterator matches a predicate.
2697    ///
2698    /// `all()` takes a closure that returns `true` or `false`. It applies
2699    /// this closure to each element of the iterator, and if they all return
2700    /// `true`, then so does `all()`. If any of them return `false`, it
2701    /// returns `false`.
2702    ///
2703    /// `all()` is short-circuiting; in other words, it will stop processing
2704    /// as soon as it finds a `false`, given that no matter what else happens,
2705    /// the result will also be `false`.
2706    ///
2707    /// An empty iterator returns `true`.
2708    ///
2709    /// # Examples
2710    ///
2711    /// Basic usage:
2712    ///
2713    /// ```
2714    /// let a = [1, 2, 3];
2715    ///
2716    /// assert!(a.into_iter().all(|x| x > 0));
2717    ///
2718    /// assert!(!a.into_iter().all(|x| x > 2));
2719    /// ```
2720    ///
2721    /// Stopping at the first `false`:
2722    ///
2723    /// ```
2724    /// let a = [1, 2, 3];
2725    ///
2726    /// let mut iter = a.into_iter();
2727    ///
2728    /// assert!(!iter.all(|x| x != 2));
2729    ///
2730    /// // we can still use `iter`, as there are more elements.
2731    /// assert_eq!(iter.next(), Some(3));
2732    /// ```
2733    #[inline]
2734    #[stable(feature = "rust1", since = "1.0.0")]
2735    fn all<F>(&mut self, f: F) -> bool
2736    where
2737        Self: Sized,
2738        F: FnMut(Self::Item) -> bool,
2739    {
2740        #[inline]
2741        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2742            move |(), x| {
2743                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2744            }
2745        }
2746        self.try_fold((), check(f)) == ControlFlow::Continue(())
2747    }
2748
2749    /// Tests if any element of the iterator matches a predicate.
2750    ///
2751    /// `any()` takes a closure that returns `true` or `false`. It applies
2752    /// this closure to each element of the iterator, and if any of them return
2753    /// `true`, then so does `any()`. If they all return `false`, it
2754    /// returns `false`.
2755    ///
2756    /// `any()` is short-circuiting; in other words, it will stop processing
2757    /// as soon as it finds a `true`, given that no matter what else happens,
2758    /// the result will also be `true`.
2759    ///
2760    /// An empty iterator returns `false`.
2761    ///
2762    /// # Examples
2763    ///
2764    /// Basic usage:
2765    ///
2766    /// ```
2767    /// let a = [1, 2, 3];
2768    ///
2769    /// assert!(a.into_iter().any(|x| x > 0));
2770    ///
2771    /// assert!(!a.into_iter().any(|x| x > 5));
2772    /// ```
2773    ///
2774    /// Stopping at the first `true`:
2775    ///
2776    /// ```
2777    /// let a = [1, 2, 3];
2778    ///
2779    /// let mut iter = a.into_iter();
2780    ///
2781    /// assert!(iter.any(|x| x != 2));
2782    ///
2783    /// // we can still use `iter`, as there are more elements.
2784    /// assert_eq!(iter.next(), Some(2));
2785    /// ```
2786    #[inline]
2787    #[stable(feature = "rust1", since = "1.0.0")]
2788    fn any<F>(&mut self, f: F) -> bool
2789    where
2790        Self: Sized,
2791        F: FnMut(Self::Item) -> bool,
2792    {
2793        #[inline]
2794        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2795            move |(), x| {
2796                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2797            }
2798        }
2799
2800        self.try_fold((), check(f)) == ControlFlow::Break(())
2801    }
2802
2803    /// Searches for an element of an iterator that satisfies a predicate.
2804    ///
2805    /// `find()` takes a closure that returns `true` or `false`. It applies
2806    /// this closure to each element of the iterator, and if any of them return
2807    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2808    /// `false`, it returns [`None`].
2809    ///
2810    /// `find()` is short-circuiting; in other words, it will stop processing
2811    /// as soon as the closure returns `true`.
2812    ///
2813    /// Because `find()` takes a reference, and many iterators iterate over
2814    /// references, this leads to a possibly confusing situation where the
2815    /// argument is a double reference. You can see this effect in the
2816    /// examples below, with `&&x`.
2817    ///
2818    /// If you need the index of the element, see [`position()`].
2819    ///
2820    /// [`Some(element)`]: Some
2821    /// [`position()`]: Iterator::position
2822    ///
2823    /// # Examples
2824    ///
2825    /// Basic usage:
2826    ///
2827    /// ```
2828    /// let a = [1, 2, 3];
2829    ///
2830    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2831    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2832    /// ```
2833    ///
2834    /// Stopping at the first `true`:
2835    ///
2836    /// ```
2837    /// let a = [1, 2, 3];
2838    ///
2839    /// let mut iter = a.into_iter();
2840    ///
2841    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2842    ///
2843    /// // we can still use `iter`, as there are more elements.
2844    /// assert_eq!(iter.next(), Some(3));
2845    /// ```
2846    ///
2847    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2848    #[inline]
2849    #[stable(feature = "rust1", since = "1.0.0")]
2850    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2851    where
2852        Self: Sized,
2853        P: FnMut(&Self::Item) -> bool,
2854    {
2855        #[inline]
2856        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2857            move |(), x| {
2858                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2859            }
2860        }
2861
2862        self.try_fold((), check(predicate)).break_value()
2863    }
2864
2865    /// Applies function to the elements of iterator and returns
2866    /// the first non-none result.
2867    ///
2868    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2869    ///
2870    /// # Examples
2871    ///
2872    /// ```
2873    /// let a = ["lol", "NaN", "2", "5"];
2874    ///
2875    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2876    ///
2877    /// assert_eq!(first_number, Some(2));
2878    /// ```
2879    #[inline]
2880    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2881    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2882    where
2883        Self: Sized,
2884        F: FnMut(Self::Item) -> Option<B>,
2885    {
2886        #[inline]
2887        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2888            move |(), x| match f(x) {
2889                Some(x) => ControlFlow::Break(x),
2890                None => ControlFlow::Continue(()),
2891            }
2892        }
2893
2894        self.try_fold((), check(f)).break_value()
2895    }
2896
2897    /// Applies function to the elements of iterator and returns
2898    /// the first true result or the first error.
2899    ///
2900    /// The return type of this method depends on the return type of the closure.
2901    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2902    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2903    ///
2904    /// # Examples
2905    ///
2906    /// ```
2907    /// #![feature(try_find)]
2908    ///
2909    /// let a = ["1", "2", "lol", "NaN", "5"];
2910    ///
2911    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2912    ///     Ok(s.parse::<i32>()? == search)
2913    /// };
2914    ///
2915    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2916    /// assert_eq!(result, Ok(Some("2")));
2917    ///
2918    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
2919    /// assert!(result.is_err());
2920    /// ```
2921    ///
2922    /// This also supports other types which implement [`Try`], not just [`Result`].
2923    ///
2924    /// ```
2925    /// #![feature(try_find)]
2926    ///
2927    /// use std::num::NonZero;
2928    ///
2929    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
2930    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2931    /// assert_eq!(result, Some(Some(4)));
2932    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2933    /// assert_eq!(result, Some(None));
2934    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2935    /// assert_eq!(result, None);
2936    /// ```
2937    #[inline]
2938    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
2939    fn try_find<R>(
2940        &mut self,
2941        f: impl FnMut(&Self::Item) -> R,
2942    ) -> ChangeOutputType<R, Option<Self::Item>>
2943    where
2944        Self: Sized,
2945        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
2946    {
2947        #[inline]
2948        fn check<I, V, R>(
2949            mut f: impl FnMut(&I) -> V,
2950        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
2951        where
2952            V: Try<Output = bool, Residual = R>,
2953            R: Residual<Option<I>>,
2954        {
2955            move |(), x| match f(&x).branch() {
2956                ControlFlow::Continue(false) => ControlFlow::Continue(()),
2957                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
2958                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
2959            }
2960        }
2961
2962        match self.try_fold((), check(f)) {
2963            ControlFlow::Break(x) => x,
2964            ControlFlow::Continue(()) => Try::from_output(None),
2965        }
2966    }
2967
2968    /// Searches for an element in an iterator, returning its index.
2969    ///
2970    /// `position()` takes a closure that returns `true` or `false`. It applies
2971    /// this closure to each element of the iterator, and if one of them
2972    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
2973    /// them return `false`, it returns [`None`].
2974    ///
2975    /// `position()` is short-circuiting; in other words, it will stop
2976    /// processing as soon as it finds a `true`.
2977    ///
2978    /// # Overflow Behavior
2979    ///
2980    /// The method does no guarding against overflows, so if there are more
2981    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
2982    /// result or panics. If overflow checks are enabled, a panic is
2983    /// guaranteed.
2984    ///
2985    /// # Panics
2986    ///
2987    /// This function might panic if the iterator has more than `usize::MAX`
2988    /// non-matching elements.
2989    ///
2990    /// [`Some(index)`]: Some
2991    ///
2992    /// # Examples
2993    ///
2994    /// Basic usage:
2995    ///
2996    /// ```
2997    /// let a = [1, 2, 3];
2998    ///
2999    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3000    ///
3001    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3002    /// ```
3003    ///
3004    /// Stopping at the first `true`:
3005    ///
3006    /// ```
3007    /// let a = [1, 2, 3, 4];
3008    ///
3009    /// let mut iter = a.into_iter();
3010    ///
3011    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3012    ///
3013    /// // we can still use `iter`, as there are more elements.
3014    /// assert_eq!(iter.next(), Some(3));
3015    ///
3016    /// // The returned index depends on iterator state
3017    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3018    ///
3019    /// ```
3020    #[inline]
3021    #[stable(feature = "rust1", since = "1.0.0")]
3022    fn position<P>(&mut self, predicate: P) -> Option<usize>
3023    where
3024        Self: Sized,
3025        P: FnMut(Self::Item) -> bool,
3026    {
3027        #[inline]
3028        fn check<'a, T>(
3029            mut predicate: impl FnMut(T) -> bool + 'a,
3030            acc: &'a mut usize,
3031        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3032            #[rustc_inherit_overflow_checks]
3033            move |_, x| {
3034                if predicate(x) {
3035                    ControlFlow::Break(*acc)
3036                } else {
3037                    *acc += 1;
3038                    ControlFlow::Continue(())
3039                }
3040            }
3041        }
3042
3043        let mut acc = 0;
3044        self.try_fold((), check(predicate, &mut acc)).break_value()
3045    }
3046
3047    /// Searches for an element in an iterator from the right, returning its
3048    /// index.
3049    ///
3050    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3051    /// this closure to each element of the iterator, starting from the end,
3052    /// and if one of them returns `true`, then `rposition()` returns
3053    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3054    ///
3055    /// `rposition()` is short-circuiting; in other words, it will stop
3056    /// processing as soon as it finds a `true`.
3057    ///
3058    /// [`Some(index)`]: Some
3059    ///
3060    /// # Examples
3061    ///
3062    /// Basic usage:
3063    ///
3064    /// ```
3065    /// let a = [1, 2, 3];
3066    ///
3067    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3068    ///
3069    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3070    /// ```
3071    ///
3072    /// Stopping at the first `true`:
3073    ///
3074    /// ```
3075    /// let a = [-1, 2, 3, 4];
3076    ///
3077    /// let mut iter = a.into_iter();
3078    ///
3079    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3080    ///
3081    /// // we can still use `iter`, as there are more elements.
3082    /// assert_eq!(iter.next(), Some(-1));
3083    /// assert_eq!(iter.next_back(), Some(3));
3084    /// ```
3085    #[inline]
3086    #[stable(feature = "rust1", since = "1.0.0")]
3087    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3088    where
3089        P: FnMut(Self::Item) -> bool,
3090        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3091    {
3092        // No need for an overflow check here, because `ExactSizeIterator`
3093        // implies that the number of elements fits into a `usize`.
3094        #[inline]
3095        fn check<T>(
3096            mut predicate: impl FnMut(T) -> bool,
3097        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3098            move |i, x| {
3099                let i = i - 1;
3100                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3101            }
3102        }
3103
3104        let n = self.len();
3105        self.try_rfold(n, check(predicate)).break_value()
3106    }
3107
3108    /// Returns the maximum element of an iterator.
3109    ///
3110    /// If several elements are equally maximum, the last element is
3111    /// returned. If the iterator is empty, [`None`] is returned.
3112    ///
3113    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3114    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3115    /// ```
3116    /// assert_eq!(
3117    ///     [2.4, f32::NAN, 1.3]
3118    ///         .into_iter()
3119    ///         .reduce(f32::max)
3120    ///         .unwrap_or(0.),
3121    ///     2.4
3122    /// );
3123    /// ```
3124    ///
3125    /// # Examples
3126    ///
3127    /// ```
3128    /// let a = [1, 2, 3];
3129    /// let b: [u32; 0] = [];
3130    ///
3131    /// assert_eq!(a.into_iter().max(), Some(3));
3132    /// assert_eq!(b.into_iter().max(), None);
3133    /// ```
3134    #[inline]
3135    #[stable(feature = "rust1", since = "1.0.0")]
3136    fn max(self) -> Option<Self::Item>
3137    where
3138        Self: Sized,
3139        Self::Item: Ord,
3140    {
3141        self.max_by(Ord::cmp)
3142    }
3143
3144    /// Returns the minimum element of an iterator.
3145    ///
3146    /// If several elements are equally minimum, the first element is returned.
3147    /// If the iterator is empty, [`None`] is returned.
3148    ///
3149    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3150    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3151    /// ```
3152    /// assert_eq!(
3153    ///     [2.4, f32::NAN, 1.3]
3154    ///         .into_iter()
3155    ///         .reduce(f32::min)
3156    ///         .unwrap_or(0.),
3157    ///     1.3
3158    /// );
3159    /// ```
3160    ///
3161    /// # Examples
3162    ///
3163    /// ```
3164    /// let a = [1, 2, 3];
3165    /// let b: [u32; 0] = [];
3166    ///
3167    /// assert_eq!(a.into_iter().min(), Some(1));
3168    /// assert_eq!(b.into_iter().min(), None);
3169    /// ```
3170    #[inline]
3171    #[stable(feature = "rust1", since = "1.0.0")]
3172    fn min(self) -> Option<Self::Item>
3173    where
3174        Self: Sized,
3175        Self::Item: Ord,
3176    {
3177        self.min_by(Ord::cmp)
3178    }
3179
3180    /// Returns the element that gives the maximum value from the
3181    /// specified function.
3182    ///
3183    /// If several elements are equally maximum, the last element is
3184    /// returned. If the iterator is empty, [`None`] is returned.
3185    ///
3186    /// # Examples
3187    ///
3188    /// ```
3189    /// let a = [-3_i32, 0, 1, 5, -10];
3190    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3191    /// ```
3192    #[inline]
3193    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3194    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3195    where
3196        Self: Sized,
3197        F: FnMut(&Self::Item) -> B,
3198    {
3199        #[inline]
3200        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3201            move |x| (f(&x), x)
3202        }
3203
3204        #[inline]
3205        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3206            x_p.cmp(y_p)
3207        }
3208
3209        let (_, x) = self.map(key(f)).max_by(compare)?;
3210        Some(x)
3211    }
3212
3213    /// Returns the element that gives the maximum value with respect to the
3214    /// specified comparison function.
3215    ///
3216    /// If several elements are equally maximum, the last element is
3217    /// returned. If the iterator is empty, [`None`] is returned.
3218    ///
3219    /// # Examples
3220    ///
3221    /// ```
3222    /// let a = [-3_i32, 0, 1, 5, -10];
3223    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3224    /// ```
3225    #[inline]
3226    #[stable(feature = "iter_max_by", since = "1.15.0")]
3227    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3228    where
3229        Self: Sized,
3230        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3231    {
3232        #[inline]
3233        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3234            move |x, y| cmp::max_by(x, y, &mut compare)
3235        }
3236
3237        self.reduce(fold(compare))
3238    }
3239
3240    /// Returns the element that gives the minimum value from the
3241    /// specified function.
3242    ///
3243    /// If several elements are equally minimum, the first element is
3244    /// returned. If the iterator is empty, [`None`] is returned.
3245    ///
3246    /// # Examples
3247    ///
3248    /// ```
3249    /// let a = [-3_i32, 0, 1, 5, -10];
3250    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3251    /// ```
3252    #[inline]
3253    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3254    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3255    where
3256        Self: Sized,
3257        F: FnMut(&Self::Item) -> B,
3258    {
3259        #[inline]
3260        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3261            move |x| (f(&x), x)
3262        }
3263
3264        #[inline]
3265        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3266            x_p.cmp(y_p)
3267        }
3268
3269        let (_, x) = self.map(key(f)).min_by(compare)?;
3270        Some(x)
3271    }
3272
3273    /// Returns the element that gives the minimum value with respect to the
3274    /// specified comparison function.
3275    ///
3276    /// If several elements are equally minimum, the first element is
3277    /// returned. If the iterator is empty, [`None`] is returned.
3278    ///
3279    /// # Examples
3280    ///
3281    /// ```
3282    /// let a = [-3_i32, 0, 1, 5, -10];
3283    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3284    /// ```
3285    #[inline]
3286    #[stable(feature = "iter_min_by", since = "1.15.0")]
3287    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3288    where
3289        Self: Sized,
3290        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3291    {
3292        #[inline]
3293        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3294            move |x, y| cmp::min_by(x, y, &mut compare)
3295        }
3296
3297        self.reduce(fold(compare))
3298    }
3299
3300    /// Reverses an iterator's direction.
3301    ///
3302    /// Usually, iterators iterate from left to right. After using `rev()`,
3303    /// an iterator will instead iterate from right to left.
3304    ///
3305    /// This is only possible if the iterator has an end, so `rev()` only
3306    /// works on [`DoubleEndedIterator`]s.
3307    ///
3308    /// # Examples
3309    ///
3310    /// ```
3311    /// let a = [1, 2, 3];
3312    ///
3313    /// let mut iter = a.into_iter().rev();
3314    ///
3315    /// assert_eq!(iter.next(), Some(3));
3316    /// assert_eq!(iter.next(), Some(2));
3317    /// assert_eq!(iter.next(), Some(1));
3318    ///
3319    /// assert_eq!(iter.next(), None);
3320    /// ```
3321    #[inline]
3322    #[doc(alias = "reverse")]
3323    #[stable(feature = "rust1", since = "1.0.0")]
3324    fn rev(self) -> Rev<Self>
3325    where
3326        Self: Sized + DoubleEndedIterator,
3327    {
3328        Rev::new(self)
3329    }
3330
3331    /// Converts an iterator of pairs into a pair of containers.
3332    ///
3333    /// `unzip()` consumes an entire iterator of pairs, producing two
3334    /// collections: one from the left elements of the pairs, and one
3335    /// from the right elements.
3336    ///
3337    /// This function is, in some sense, the opposite of [`zip`].
3338    ///
3339    /// [`zip`]: Iterator::zip
3340    ///
3341    /// # Examples
3342    ///
3343    /// ```
3344    /// let a = [(1, 2), (3, 4), (5, 6)];
3345    ///
3346    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3347    ///
3348    /// assert_eq!(left, [1, 3, 5]);
3349    /// assert_eq!(right, [2, 4, 6]);
3350    ///
3351    /// // you can also unzip multiple nested tuples at once
3352    /// let a = [(1, (2, 3)), (4, (5, 6))];
3353    ///
3354    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3355    /// assert_eq!(x, [1, 4]);
3356    /// assert_eq!(y, [2, 5]);
3357    /// assert_eq!(z, [3, 6]);
3358    /// ```
3359    #[stable(feature = "rust1", since = "1.0.0")]
3360    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3361    where
3362        FromA: Default + Extend<A>,
3363        FromB: Default + Extend<B>,
3364        Self: Sized + Iterator<Item = (A, B)>,
3365    {
3366        let mut unzipped: (FromA, FromB) = Default::default();
3367        unzipped.extend(self);
3368        unzipped
3369    }
3370
3371    /// Creates an iterator which copies all of its elements.
3372    ///
3373    /// This is useful when you have an iterator over `&T`, but you need an
3374    /// iterator over `T`.
3375    ///
3376    /// # Examples
3377    ///
3378    /// ```
3379    /// let a = [1, 2, 3];
3380    ///
3381    /// let v_copied: Vec<_> = a.iter().copied().collect();
3382    ///
3383    /// // copied is the same as .map(|&x| x)
3384    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3385    ///
3386    /// assert_eq!(v_copied, [1, 2, 3]);
3387    /// assert_eq!(v_map, [1, 2, 3]);
3388    /// ```
3389    #[stable(feature = "iter_copied", since = "1.36.0")]
3390    #[rustc_diagnostic_item = "iter_copied"]
3391    fn copied<'a, T: 'a>(self) -> Copied<Self>
3392    where
3393        Self: Sized + Iterator<Item = &'a T>,
3394        T: Copy,
3395    {
3396        Copied::new(self)
3397    }
3398
3399    /// Creates an iterator which [`clone`]s all of its elements.
3400    ///
3401    /// This is useful when you have an iterator over `&T`, but you need an
3402    /// iterator over `T`.
3403    ///
3404    /// There is no guarantee whatsoever about the `clone` method actually
3405    /// being called *or* optimized away. So code should not depend on
3406    /// either.
3407    ///
3408    /// [`clone`]: Clone::clone
3409    ///
3410    /// # Examples
3411    ///
3412    /// Basic usage:
3413    ///
3414    /// ```
3415    /// let a = [1, 2, 3];
3416    ///
3417    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3418    ///
3419    /// // cloned is the same as .map(|&x| x), for integers
3420    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3421    ///
3422    /// assert_eq!(v_cloned, [1, 2, 3]);
3423    /// assert_eq!(v_map, [1, 2, 3]);
3424    /// ```
3425    ///
3426    /// To get the best performance, try to clone late:
3427    ///
3428    /// ```
3429    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3430    /// // don't do this:
3431    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3432    /// assert_eq!(&[vec![23]], &slower[..]);
3433    /// // instead call `cloned` late
3434    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3435    /// assert_eq!(&[vec![23]], &faster[..]);
3436    /// ```
3437    #[stable(feature = "rust1", since = "1.0.0")]
3438    #[rustc_diagnostic_item = "iter_cloned"]
3439    fn cloned<'a, T: 'a>(self) -> Cloned<Self>
3440    where
3441        Self: Sized + Iterator<Item = &'a T>,
3442        T: Clone,
3443    {
3444        Cloned::new(self)
3445    }
3446
3447    /// Repeats an iterator endlessly.
3448    ///
3449    /// Instead of stopping at [`None`], the iterator will instead start again,
3450    /// from the beginning. After iterating again, it will start at the
3451    /// beginning again. And again. And again. Forever. Note that in case the
3452    /// original iterator is empty, the resulting iterator will also be empty.
3453    ///
3454    /// # Examples
3455    ///
3456    /// ```
3457    /// let a = [1, 2, 3];
3458    ///
3459    /// let mut iter = a.into_iter().cycle();
3460    ///
3461    /// loop {
3462    ///     assert_eq!(iter.next(), Some(1));
3463    ///     assert_eq!(iter.next(), Some(2));
3464    ///     assert_eq!(iter.next(), Some(3));
3465    /// #   break;
3466    /// }
3467    /// ```
3468    #[stable(feature = "rust1", since = "1.0.0")]
3469    #[inline]
3470    fn cycle(self) -> Cycle<Self>
3471    where
3472        Self: Sized + Clone,
3473    {
3474        Cycle::new(self)
3475    }
3476
3477    /// Returns an iterator over `N` elements of the iterator at a time.
3478    ///
3479    /// The chunks do not overlap. If `N` does not divide the length of the
3480    /// iterator, then the last up to `N-1` elements will be omitted and can be
3481    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3482    /// function of the iterator.
3483    ///
3484    /// # Panics
3485    ///
3486    /// Panics if `N` is zero.
3487    ///
3488    /// # Examples
3489    ///
3490    /// Basic usage:
3491    ///
3492    /// ```
3493    /// #![feature(iter_array_chunks)]
3494    ///
3495    /// let mut iter = "lorem".chars().array_chunks();
3496    /// assert_eq!(iter.next(), Some(['l', 'o']));
3497    /// assert_eq!(iter.next(), Some(['r', 'e']));
3498    /// assert_eq!(iter.next(), None);
3499    /// assert_eq!(iter.into_remainder().unwrap().as_slice(), &['m']);
3500    /// ```
3501    ///
3502    /// ```
3503    /// #![feature(iter_array_chunks)]
3504    ///
3505    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3506    /// //          ^-----^  ^------^
3507    /// for [x, y, z] in data.iter().array_chunks() {
3508    ///     assert_eq!(x + y + z, 4);
3509    /// }
3510    /// ```
3511    #[track_caller]
3512    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3513    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3514    where
3515        Self: Sized,
3516    {
3517        ArrayChunks::new(self)
3518    }
3519
3520    /// Sums the elements of an iterator.
3521    ///
3522    /// Takes each element, adds them together, and returns the result.
3523    ///
3524    /// An empty iterator returns the *additive identity* ("zero") of the type,
3525    /// which is `0` for integers and `-0.0` for floats.
3526    ///
3527    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3528    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3529    ///
3530    /// # Panics
3531    ///
3532    /// When calling `sum()` and a primitive integer type is being returned, this
3533    /// method will panic if the computation overflows and overflow checks are
3534    /// enabled.
3535    ///
3536    /// # Examples
3537    ///
3538    /// ```
3539    /// let a = [1, 2, 3];
3540    /// let sum: i32 = a.iter().sum();
3541    ///
3542    /// assert_eq!(sum, 6);
3543    ///
3544    /// let b: Vec<f32> = vec![];
3545    /// let sum: f32 = b.iter().sum();
3546    /// assert_eq!(sum, -0.0_f32);
3547    /// ```
3548    #[stable(feature = "iter_arith", since = "1.11.0")]
3549    fn sum<S>(self) -> S
3550    where
3551        Self: Sized,
3552        S: Sum<Self::Item>,
3553    {
3554        Sum::sum(self)
3555    }
3556
3557    /// Iterates over the entire iterator, multiplying all the elements
3558    ///
3559    /// An empty iterator returns the one value of the type.
3560    ///
3561    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3562    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3563    ///
3564    /// # Panics
3565    ///
3566    /// When calling `product()` and a primitive integer type is being returned,
3567    /// method will panic if the computation overflows and overflow checks are
3568    /// enabled.
3569    ///
3570    /// # Examples
3571    ///
3572    /// ```
3573    /// fn factorial(n: u32) -> u32 {
3574    ///     (1..=n).product()
3575    /// }
3576    /// assert_eq!(factorial(0), 1);
3577    /// assert_eq!(factorial(1), 1);
3578    /// assert_eq!(factorial(5), 120);
3579    /// ```
3580    #[stable(feature = "iter_arith", since = "1.11.0")]
3581    fn product<P>(self) -> P
3582    where
3583        Self: Sized,
3584        P: Product<Self::Item>,
3585    {
3586        Product::product(self)
3587    }
3588
3589    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3590    /// of another.
3591    ///
3592    /// # Examples
3593    ///
3594    /// ```
3595    /// use std::cmp::Ordering;
3596    ///
3597    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3598    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3599    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3600    /// ```
3601    #[stable(feature = "iter_order", since = "1.5.0")]
3602    fn cmp<I>(self, other: I) -> Ordering
3603    where
3604        I: IntoIterator<Item = Self::Item>,
3605        Self::Item: Ord,
3606        Self: Sized,
3607    {
3608        self.cmp_by(other, |x, y| x.cmp(&y))
3609    }
3610
3611    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3612    /// of another with respect to the specified comparison function.
3613    ///
3614    /// # Examples
3615    ///
3616    /// ```
3617    /// #![feature(iter_order_by)]
3618    ///
3619    /// use std::cmp::Ordering;
3620    ///
3621    /// let xs = [1, 2, 3, 4];
3622    /// let ys = [1, 4, 9, 16];
3623    ///
3624    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3625    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3626    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3627    /// ```
3628    #[unstable(feature = "iter_order_by", issue = "64295")]
3629    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3630    where
3631        Self: Sized,
3632        I: IntoIterator,
3633        F: FnMut(Self::Item, I::Item) -> Ordering,
3634    {
3635        #[inline]
3636        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3637        where
3638            F: FnMut(X, Y) -> Ordering,
3639        {
3640            move |x, y| match cmp(x, y) {
3641                Ordering::Equal => ControlFlow::Continue(()),
3642                non_eq => ControlFlow::Break(non_eq),
3643            }
3644        }
3645
3646        match iter_compare(self, other.into_iter(), compare(cmp)) {
3647            ControlFlow::Continue(ord) => ord,
3648            ControlFlow::Break(ord) => ord,
3649        }
3650    }
3651
3652    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3653    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3654    /// evaluation, returning a result without comparing the remaining elements.
3655    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3656    ///
3657    /// # Examples
3658    ///
3659    /// ```
3660    /// use std::cmp::Ordering;
3661    ///
3662    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3663    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3664    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3665    /// ```
3666    ///
3667    /// For floating-point numbers, NaN does not have a total order and will result
3668    /// in `None` when compared:
3669    ///
3670    /// ```
3671    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3672    /// ```
3673    ///
3674    /// The results are determined by the order of evaluation.
3675    ///
3676    /// ```
3677    /// use std::cmp::Ordering;
3678    ///
3679    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3680    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3681    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3682    /// ```
3683    ///
3684    #[stable(feature = "iter_order", since = "1.5.0")]
3685    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3686    where
3687        I: IntoIterator,
3688        Self::Item: PartialOrd<I::Item>,
3689        Self: Sized,
3690    {
3691        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3692    }
3693
3694    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3695    /// of another with respect to the specified comparison function.
3696    ///
3697    /// # Examples
3698    ///
3699    /// ```
3700    /// #![feature(iter_order_by)]
3701    ///
3702    /// use std::cmp::Ordering;
3703    ///
3704    /// let xs = [1.0, 2.0, 3.0, 4.0];
3705    /// let ys = [1.0, 4.0, 9.0, 16.0];
3706    ///
3707    /// assert_eq!(
3708    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3709    ///     Some(Ordering::Less)
3710    /// );
3711    /// assert_eq!(
3712    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3713    ///     Some(Ordering::Equal)
3714    /// );
3715    /// assert_eq!(
3716    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3717    ///     Some(Ordering::Greater)
3718    /// );
3719    /// ```
3720    #[unstable(feature = "iter_order_by", issue = "64295")]
3721    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3722    where
3723        Self: Sized,
3724        I: IntoIterator,
3725        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3726    {
3727        #[inline]
3728        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3729        where
3730            F: FnMut(X, Y) -> Option<Ordering>,
3731        {
3732            move |x, y| match partial_cmp(x, y) {
3733                Some(Ordering::Equal) => ControlFlow::Continue(()),
3734                non_eq => ControlFlow::Break(non_eq),
3735            }
3736        }
3737
3738        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3739            ControlFlow::Continue(ord) => Some(ord),
3740            ControlFlow::Break(ord) => ord,
3741        }
3742    }
3743
3744    /// Determines if the elements of this [`Iterator`] are equal to those of
3745    /// another.
3746    ///
3747    /// # Examples
3748    ///
3749    /// ```
3750    /// assert_eq!([1].iter().eq([1].iter()), true);
3751    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3752    /// ```
3753    #[stable(feature = "iter_order", since = "1.5.0")]
3754    fn eq<I>(self, other: I) -> bool
3755    where
3756        I: IntoIterator,
3757        Self::Item: PartialEq<I::Item>,
3758        Self: Sized,
3759    {
3760        self.eq_by(other, |x, y| x == y)
3761    }
3762
3763    /// Determines if the elements of this [`Iterator`] are equal to those of
3764    /// another with respect to the specified equality function.
3765    ///
3766    /// # Examples
3767    ///
3768    /// ```
3769    /// #![feature(iter_order_by)]
3770    ///
3771    /// let xs = [1, 2, 3, 4];
3772    /// let ys = [1, 4, 9, 16];
3773    ///
3774    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3775    /// ```
3776    #[unstable(feature = "iter_order_by", issue = "64295")]
3777    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3778    where
3779        Self: Sized,
3780        I: IntoIterator,
3781        F: FnMut(Self::Item, I::Item) -> bool,
3782    {
3783        #[inline]
3784        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3785        where
3786            F: FnMut(X, Y) -> bool,
3787        {
3788            move |x, y| {
3789                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3790            }
3791        }
3792
3793        match iter_compare(self, other.into_iter(), compare(eq)) {
3794            ControlFlow::Continue(ord) => ord == Ordering::Equal,
3795            ControlFlow::Break(()) => false,
3796        }
3797    }
3798
3799    /// Determines if the elements of this [`Iterator`] are not equal to those of
3800    /// another.
3801    ///
3802    /// # Examples
3803    ///
3804    /// ```
3805    /// assert_eq!([1].iter().ne([1].iter()), false);
3806    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3807    /// ```
3808    #[stable(feature = "iter_order", since = "1.5.0")]
3809    fn ne<I>(self, other: I) -> bool
3810    where
3811        I: IntoIterator,
3812        Self::Item: PartialEq<I::Item>,
3813        Self: Sized,
3814    {
3815        !self.eq(other)
3816    }
3817
3818    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3819    /// less than those of another.
3820    ///
3821    /// # Examples
3822    ///
3823    /// ```
3824    /// assert_eq!([1].iter().lt([1].iter()), false);
3825    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3826    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3827    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3828    /// ```
3829    #[stable(feature = "iter_order", since = "1.5.0")]
3830    fn lt<I>(self, other: I) -> bool
3831    where
3832        I: IntoIterator,
3833        Self::Item: PartialOrd<I::Item>,
3834        Self: Sized,
3835    {
3836        self.partial_cmp(other) == Some(Ordering::Less)
3837    }
3838
3839    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3840    /// less or equal to those of another.
3841    ///
3842    /// # Examples
3843    ///
3844    /// ```
3845    /// assert_eq!([1].iter().le([1].iter()), true);
3846    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3847    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3848    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3849    /// ```
3850    #[stable(feature = "iter_order", since = "1.5.0")]
3851    fn le<I>(self, other: I) -> bool
3852    where
3853        I: IntoIterator,
3854        Self::Item: PartialOrd<I::Item>,
3855        Self: Sized,
3856    {
3857        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3858    }
3859
3860    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3861    /// greater than those of another.
3862    ///
3863    /// # Examples
3864    ///
3865    /// ```
3866    /// assert_eq!([1].iter().gt([1].iter()), false);
3867    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3868    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3869    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3870    /// ```
3871    #[stable(feature = "iter_order", since = "1.5.0")]
3872    fn gt<I>(self, other: I) -> bool
3873    where
3874        I: IntoIterator,
3875        Self::Item: PartialOrd<I::Item>,
3876        Self: Sized,
3877    {
3878        self.partial_cmp(other) == Some(Ordering::Greater)
3879    }
3880
3881    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3882    /// greater than or equal to those of another.
3883    ///
3884    /// # Examples
3885    ///
3886    /// ```
3887    /// assert_eq!([1].iter().ge([1].iter()), true);
3888    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3889    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3890    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3891    /// ```
3892    #[stable(feature = "iter_order", since = "1.5.0")]
3893    fn ge<I>(self, other: I) -> bool
3894    where
3895        I: IntoIterator,
3896        Self::Item: PartialOrd<I::Item>,
3897        Self: Sized,
3898    {
3899        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3900    }
3901
3902    /// Checks if the elements of this iterator are sorted.
3903    ///
3904    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3905    /// iterator yields exactly zero or one element, `true` is returned.
3906    ///
3907    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3908    /// implies that this function returns `false` if any two consecutive items are not
3909    /// comparable.
3910    ///
3911    /// # Examples
3912    ///
3913    /// ```
3914    /// assert!([1, 2, 2, 9].iter().is_sorted());
3915    /// assert!(![1, 3, 2, 4].iter().is_sorted());
3916    /// assert!([0].iter().is_sorted());
3917    /// assert!(std::iter::empty::<i32>().is_sorted());
3918    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
3919    /// ```
3920    #[inline]
3921    #[stable(feature = "is_sorted", since = "1.82.0")]
3922    fn is_sorted(self) -> bool
3923    where
3924        Self: Sized,
3925        Self::Item: PartialOrd,
3926    {
3927        self.is_sorted_by(|a, b| a <= b)
3928    }
3929
3930    /// Checks if the elements of this iterator are sorted using the given comparator function.
3931    ///
3932    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
3933    /// function to determine whether two elements are to be considered in sorted order.
3934    ///
3935    /// # Examples
3936    ///
3937    /// ```
3938    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
3939    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
3940    ///
3941    /// assert!([0].iter().is_sorted_by(|a, b| true));
3942    /// assert!([0].iter().is_sorted_by(|a, b| false));
3943    ///
3944    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
3945    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
3946    /// ```
3947    #[stable(feature = "is_sorted", since = "1.82.0")]
3948    fn is_sorted_by<F>(mut self, compare: F) -> bool
3949    where
3950        Self: Sized,
3951        F: FnMut(&Self::Item, &Self::Item) -> bool,
3952    {
3953        #[inline]
3954        fn check<'a, T>(
3955            last: &'a mut T,
3956            mut compare: impl FnMut(&T, &T) -> bool + 'a,
3957        ) -> impl FnMut(T) -> bool + 'a {
3958            move |curr| {
3959                if !compare(&last, &curr) {
3960                    return false;
3961                }
3962                *last = curr;
3963                true
3964            }
3965        }
3966
3967        let mut last = match self.next() {
3968            Some(e) => e,
3969            None => return true,
3970        };
3971
3972        self.all(check(&mut last, compare))
3973    }
3974
3975    /// Checks if the elements of this iterator are sorted using the given key extraction
3976    /// function.
3977    ///
3978    /// Instead of comparing the iterator's elements directly, this function compares the keys of
3979    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
3980    /// its documentation for more information.
3981    ///
3982    /// [`is_sorted`]: Iterator::is_sorted
3983    ///
3984    /// # Examples
3985    ///
3986    /// ```
3987    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
3988    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
3989    /// ```
3990    #[inline]
3991    #[stable(feature = "is_sorted", since = "1.82.0")]
3992    fn is_sorted_by_key<F, K>(self, f: F) -> bool
3993    where
3994        Self: Sized,
3995        F: FnMut(Self::Item) -> K,
3996        K: PartialOrd,
3997    {
3998        self.map(f).is_sorted()
3999    }
4000
4001    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4002    // The unusual name is to avoid name collisions in method resolution
4003    // see #76479.
4004    #[inline]
4005    #[doc(hidden)]
4006    #[unstable(feature = "trusted_random_access", issue = "none")]
4007    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4008    where
4009        Self: TrustedRandomAccessNoCoerce,
4010    {
4011        unreachable!("Always specialized");
4012    }
4013}
4014
4015/// Compares two iterators element-wise using the given function.
4016///
4017/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4018/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4019/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4020/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4021/// the iterators.
4022///
4023/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4024/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4025#[inline]
4026fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4027where
4028    A: Iterator,
4029    B: Iterator,
4030    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4031{
4032    #[inline]
4033    fn compare<'a, B, X, T>(
4034        b: &'a mut B,
4035        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4036    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4037    where
4038        B: Iterator,
4039    {
4040        move |x| match b.next() {
4041            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4042            Some(y) => f(x, y).map_break(ControlFlow::Break),
4043        }
4044    }
4045
4046    match a.try_for_each(compare(&mut b, f)) {
4047        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4048            None => Ordering::Equal,
4049            Some(_) => Ordering::Less,
4050        }),
4051        ControlFlow::Break(x) => x,
4052    }
4053}
4054
4055/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4056///
4057/// This implementation passes all method calls on to the original iterator.
4058#[stable(feature = "rust1", since = "1.0.0")]
4059impl<I: Iterator + ?Sized> Iterator for &mut I {
4060    type Item = I::Item;
4061    #[inline]
4062    fn next(&mut self) -> Option<I::Item> {
4063        (**self).next()
4064    }
4065    fn size_hint(&self) -> (usize, Option<usize>) {
4066        (**self).size_hint()
4067    }
4068    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4069        (**self).advance_by(n)
4070    }
4071    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4072        (**self).nth(n)
4073    }
4074    fn fold<B, F>(self, init: B, f: F) -> B
4075    where
4076        F: FnMut(B, Self::Item) -> B,
4077    {
4078        self.spec_fold(init, f)
4079    }
4080    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4081    where
4082        F: FnMut(B, Self::Item) -> R,
4083        R: Try<Output = B>,
4084    {
4085        self.spec_try_fold(init, f)
4086    }
4087}
4088
4089/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4090trait IteratorRefSpec: Iterator {
4091    fn spec_fold<B, F>(self, init: B, f: F) -> B
4092    where
4093        F: FnMut(B, Self::Item) -> B;
4094
4095    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4096    where
4097        F: FnMut(B, Self::Item) -> R,
4098        R: Try<Output = B>;
4099}
4100
4101impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4102    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4103    where
4104        F: FnMut(B, Self::Item) -> B,
4105    {
4106        let mut accum = init;
4107        while let Some(x) = self.next() {
4108            accum = f(accum, x);
4109        }
4110        accum
4111    }
4112
4113    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4114    where
4115        F: FnMut(B, Self::Item) -> R,
4116        R: Try<Output = B>,
4117    {
4118        let mut accum = init;
4119        while let Some(x) = self.next() {
4120            accum = f(accum, x)?;
4121        }
4122        try { accum }
4123    }
4124}
4125
4126impl<I: Iterator> IteratorRefSpec for &mut I {
4127    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4128
4129    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4130    where
4131        F: FnMut(B, Self::Item) -> R,
4132        R: Try<Output = B>,
4133    {
4134        (**self).try_fold(init, f)
4135    }
4136}