Saturating in std::num - Rust (original) (raw)
Struct Saturating
1.74.0 · Source
#[repr(transparent)]
pub struct Saturating<T>(pub T);
Expand description
Provides intentionally-saturating arithmetic on T
.
Operations like +
on u32
values are intended to never overflow, and in some debug configurations overflow is detected and results in a panic. While most arithmetic falls into this category, some code explicitly expects and relies upon saturating arithmetic.
Saturating arithmetic can be achieved either through methods likesaturating_add
, or through the Saturating<T>
type, which says that all standard arithmetic operations on the underlying value are intended to have saturating semantics.
The underlying value can be retrieved through the .0
index of theSaturating
tuple.
§Examples
use std::num::Saturating;
let max = Saturating(u32::MAX);
let one = Saturating(1u32);
assert_eq!(u32::MAX, (max + one).0);
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<usize>>::MIN, Saturating(usize::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<usize>>::MAX, Saturating(usize::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<usize>>::BITS, usize::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100usize);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0usize).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000usize);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ausize);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<usize>>::from_be(n), n)
} else {
assert_eq!(<Saturating<usize>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ausize);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<usize>>::from_le(n), n)
} else {
assert_eq!(<Saturating<usize>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ausize);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ausize);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3usize).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u8>>::MIN, Saturating(u8::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u8>>::MAX, Saturating(u8::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u8>>::BITS, u8::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100u8);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0u8).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000u8);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au8);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<u8>>::from_be(n), n)
} else {
assert_eq!(<Saturating<u8>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au8);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<u8>>::from_le(n), n)
} else {
assert_eq!(<Saturating<u8>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au8);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au8);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3u8).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u16>>::MIN, Saturating(u16::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u16>>::MAX, Saturating(u16::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u16>>::BITS, u16::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100u16);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0u16).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000u16);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au16);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<u16>>::from_be(n), n)
} else {
assert_eq!(<Saturating<u16>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au16);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<u16>>::from_le(n), n)
} else {
assert_eq!(<Saturating<u16>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au16);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au16);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3u16).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u32>>::MIN, Saturating(u32::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u32>>::MAX, Saturating(u32::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u32>>::BITS, u32::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100u32);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0u32).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000u32);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au32);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<u32>>::from_be(n), n)
} else {
assert_eq!(<Saturating<u32>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au32);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<u32>>::from_le(n), n)
} else {
assert_eq!(<Saturating<u32>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au32);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au32);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3u32).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u64>>::MIN, Saturating(u64::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u64>>::MAX, Saturating(u64::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u64>>::BITS, u64::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100u64);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0u64).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000u64);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au64);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<u64>>::from_be(n), n)
} else {
assert_eq!(<Saturating<u64>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au64);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<u64>>::from_le(n), n)
} else {
assert_eq!(<Saturating<u64>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au64);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au64);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3u64).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u128>>::MIN, Saturating(u128::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u128>>::MAX, Saturating(u128::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<u128>>::BITS, u128::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100u128);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0u128).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000u128);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au128);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<u128>>::from_be(n), n)
} else {
assert_eq!(<Saturating<u128>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au128);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<u128>>::from_le(n), n)
} else {
assert_eq!(<Saturating<u128>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au128);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Au128);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3u128).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<isize>>::MIN, Saturating(isize::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<isize>>::MAX, Saturating(isize::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<isize>>::BITS, isize::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100isize);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0isize).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000isize);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Aisize);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<isize>>::from_be(n), n)
} else {
assert_eq!(<Saturating<isize>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Aisize);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<isize>>::from_le(n), n)
} else {
assert_eq!(<Saturating<isize>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Aisize);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Aisize);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3isize).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i8>>::MIN, Saturating(i8::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i8>>::MAX, Saturating(i8::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i8>>::BITS, i8::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100i8);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0i8).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000i8);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai8);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<i8>>::from_be(n), n)
} else {
assert_eq!(<Saturating<i8>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai8);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<i8>>::from_le(n), n)
} else {
assert_eq!(<Saturating<i8>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai8);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai8);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i16>>::MIN, Saturating(i16::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i16>>::MAX, Saturating(i16::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i16>>::BITS, i16::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100i16);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0i16).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000i16);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai16);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<i16>>::from_be(n), n)
} else {
assert_eq!(<Saturating<i16>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai16);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<i16>>::from_le(n), n)
} else {
assert_eq!(<Saturating<i16>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai16);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai16);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3i16).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i32>>::MIN, Saturating(i32::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i32>>::MAX, Saturating(i32::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i32>>::BITS, i32::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100i32);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0i32).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000i32);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai32);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<i32>>::from_be(n), n)
} else {
assert_eq!(<Saturating<i32>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai32);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<i32>>::from_le(n), n)
} else {
assert_eq!(<Saturating<i32>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai32);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai32);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3i32).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i64>>::MIN, Saturating(i64::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i64>>::MAX, Saturating(i64::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i64>>::BITS, i64::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100i64);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0i64).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000i64);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai64);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<i64>>::from_be(n), n)
} else {
assert_eq!(<Saturating<i64>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai64);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<i64>>::from_le(n), n)
} else {
assert_eq!(<Saturating<i64>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai64);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai64);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3i64).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 · Source
Returns the smallest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i128>>::MIN, Saturating(i128::MIN));
1.74.0 · Source
Returns the largest value that can be represented by this integer type.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i128>>::MAX, Saturating(i128::MAX));
1.74.0 · Source
Returns the size of this integer type in bits.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(<Saturating<i128>>::BITS, i128::BITS);
1.74.0 (const: 1.74.0) · Source
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b01001100i128);
assert_eq!(n.count_ones(), 3);
1.74.0 (const: 1.74.0) · Source
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(!0i128).count_zeros(), 0);
1.74.0 (const: 1.74.0) · Source
Returns the number of trailing zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0101000i128);
assert_eq!(n.trailing_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the left by a specified amount, n
, saturating the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
1.74.0 (const: 1.74.0) · Source
Shifts the bits to the right by a specified amount, n
, saturating the truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
1.74.0 (const: 1.74.0) · Source
Reverses the byte order of the integer.
§Examples
Basic usage:
use std::num::Saturating;
let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));
let m = n.swap_bytes();
assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
1.74.0 (const: 1.74.0) · Source
Reverses the bit pattern of the integer.
§Examples
Please note that this example is shared between integer types. Which explains why i16
is used here.
Basic usage:
use std::num::Saturating;
let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
1.74.0 (const: 1.74.0) · Source
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai128);
if cfg!(target_endian = "big") {
assert_eq!(<Saturating<i128>>::from_be(n), n)
} else {
assert_eq!(<Saturating<i128>>::from_be(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai128);
if cfg!(target_endian = "little") {
assert_eq!(<Saturating<i128>>::from_le(n), n)
} else {
assert_eq!(<Saturating<i128>>::from_le(n), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai128);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(0x1Ai128);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.74.0 (const: 1.74.0) · Source
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(3i128).pow(4), Saturating(81));
Results that are too large are saturated:
use std::num::Saturating;
assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(isize::MAX >> 2);
assert_eq!(n.leading_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(100isize).abs(), Saturating(100));
assert_eq!(Saturating(-100isize).abs(), Saturating(100));
assert_eq!(Saturating(isize::MIN).abs(), Saturating((isize::MIN + 1).abs()));
assert_eq!(Saturating(isize::MIN).abs(), Saturating(isize::MIN.saturating_abs()));
assert_eq!(Saturating(isize::MIN).abs(), Saturating(isize::MAX));
1.74.0 (const: 1.74.0) · Source
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(10isize).signum(), Saturating(1));
assert_eq!(Saturating(0isize).signum(), Saturating(0));
assert_eq!(Saturating(-10isize).signum(), Saturating(-1));
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is positive and false
if the number is zero or negative.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(10isize).is_positive());
assert!(!Saturating(-10isize).is_positive());
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is negative and false
if the number is zero or positive.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(-10isize).is_negative());
assert!(!Saturating(10isize).is_negative());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(i8::MAX >> 2);
assert_eq!(n.leading_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(100i8).abs(), Saturating(100));
assert_eq!(Saturating(-100i8).abs(), Saturating(100));
assert_eq!(Saturating(i8::MIN).abs(), Saturating((i8::MIN + 1).abs()));
assert_eq!(Saturating(i8::MIN).abs(), Saturating(i8::MIN.saturating_abs()));
assert_eq!(Saturating(i8::MIN).abs(), Saturating(i8::MAX));
1.74.0 (const: 1.74.0) · Source
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(10i8).signum(), Saturating(1));
assert_eq!(Saturating(0i8).signum(), Saturating(0));
assert_eq!(Saturating(-10i8).signum(), Saturating(-1));
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is positive and false
if the number is zero or negative.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(10i8).is_positive());
assert!(!Saturating(-10i8).is_positive());
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is negative and false
if the number is zero or positive.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(-10i8).is_negative());
assert!(!Saturating(10i8).is_negative());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(i16::MAX >> 2);
assert_eq!(n.leading_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(100i16).abs(), Saturating(100));
assert_eq!(Saturating(-100i16).abs(), Saturating(100));
assert_eq!(Saturating(i16::MIN).abs(), Saturating((i16::MIN + 1).abs()));
assert_eq!(Saturating(i16::MIN).abs(), Saturating(i16::MIN.saturating_abs()));
assert_eq!(Saturating(i16::MIN).abs(), Saturating(i16::MAX));
1.74.0 (const: 1.74.0) · Source
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(10i16).signum(), Saturating(1));
assert_eq!(Saturating(0i16).signum(), Saturating(0));
assert_eq!(Saturating(-10i16).signum(), Saturating(-1));
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is positive and false
if the number is zero or negative.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(10i16).is_positive());
assert!(!Saturating(-10i16).is_positive());
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is negative and false
if the number is zero or positive.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(-10i16).is_negative());
assert!(!Saturating(10i16).is_negative());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(i32::MAX >> 2);
assert_eq!(n.leading_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(100i32).abs(), Saturating(100));
assert_eq!(Saturating(-100i32).abs(), Saturating(100));
assert_eq!(Saturating(i32::MIN).abs(), Saturating((i32::MIN + 1).abs()));
assert_eq!(Saturating(i32::MIN).abs(), Saturating(i32::MIN.saturating_abs()));
assert_eq!(Saturating(i32::MIN).abs(), Saturating(i32::MAX));
1.74.0 (const: 1.74.0) · Source
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(10i32).signum(), Saturating(1));
assert_eq!(Saturating(0i32).signum(), Saturating(0));
assert_eq!(Saturating(-10i32).signum(), Saturating(-1));
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is positive and false
if the number is zero or negative.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(10i32).is_positive());
assert!(!Saturating(-10i32).is_positive());
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is negative and false
if the number is zero or positive.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(-10i32).is_negative());
assert!(!Saturating(10i32).is_negative());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(i64::MAX >> 2);
assert_eq!(n.leading_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(100i64).abs(), Saturating(100));
assert_eq!(Saturating(-100i64).abs(), Saturating(100));
assert_eq!(Saturating(i64::MIN).abs(), Saturating((i64::MIN + 1).abs()));
assert_eq!(Saturating(i64::MIN).abs(), Saturating(i64::MIN.saturating_abs()));
assert_eq!(Saturating(i64::MIN).abs(), Saturating(i64::MAX));
1.74.0 (const: 1.74.0) · Source
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(10i64).signum(), Saturating(1));
assert_eq!(Saturating(0i64).signum(), Saturating(0));
assert_eq!(Saturating(-10i64).signum(), Saturating(-1));
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is positive and false
if the number is zero or negative.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(10i64).is_positive());
assert!(!Saturating(-10i64).is_positive());
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is negative and false
if the number is zero or positive.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(-10i64).is_negative());
assert!(!Saturating(10i64).is_negative());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(i128::MAX >> 2);
assert_eq!(n.leading_zeros(), 3);
1.74.0 (const: 1.74.0) · Source
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(100i128).abs(), Saturating(100));
assert_eq!(Saturating(-100i128).abs(), Saturating(100));
assert_eq!(Saturating(i128::MIN).abs(), Saturating((i128::MIN + 1).abs()));
assert_eq!(Saturating(i128::MIN).abs(), Saturating(i128::MIN.saturating_abs()));
assert_eq!(Saturating(i128::MIN).abs(), Saturating(i128::MAX));
1.74.0 (const: 1.74.0) · Source
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(10i128).signum(), Saturating(1));
assert_eq!(Saturating(0i128).signum(), Saturating(0));
assert_eq!(Saturating(-10i128).signum(), Saturating(-1));
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is positive and false
if the number is zero or negative.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(10i128).is_positive());
assert!(!Saturating(-10i128).is_positive());
1.74.0 (const: 1.74.0) · Source
Returns true
if self
is negative and false
if the number is zero or positive.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(-10i128).is_negative());
assert!(!Saturating(10i128).is_negative());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(usize::MAX >> 2);
assert_eq!(n.leading_zeros(), 2);
1.74.0 (const: 1.74.0) · Source
Returns true
if and only if self == 2^k
for some k
.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(16usize).is_power_of_two());
assert!(!Saturating(10usize).is_power_of_two());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(u8::MAX >> 2);
assert_eq!(n.leading_zeros(), 2);
1.74.0 (const: 1.74.0) · Source
Returns true
if and only if self == 2^k
for some k
.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(16u8).is_power_of_two());
assert!(!Saturating(10u8).is_power_of_two());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(u16::MAX >> 2);
assert_eq!(n.leading_zeros(), 2);
1.74.0 (const: 1.74.0) · Source
Returns true
if and only if self == 2^k
for some k
.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(16u16).is_power_of_two());
assert!(!Saturating(10u16).is_power_of_two());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(u32::MAX >> 2);
assert_eq!(n.leading_zeros(), 2);
1.74.0 (const: 1.74.0) · Source
Returns true
if and only if self == 2^k
for some k
.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(16u32).is_power_of_two());
assert!(!Saturating(10u32).is_power_of_two());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(u64::MAX >> 2);
assert_eq!(n.leading_zeros(), 2);
1.74.0 (const: 1.74.0) · Source
Returns true
if and only if self == 2^k
for some k
.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(16u64).is_power_of_two());
assert!(!Saturating(10u64).is_power_of_two());
1.74.0 (const: 1.74.0) · Source
Returns the number of leading zeros in the binary representation of self
.
§Examples
Basic usage:
use std::num::Saturating;
let n = Saturating(u128::MAX >> 2);
assert_eq!(n.leading_zeros(), 2);
1.74.0 (const: 1.74.0) · Source
Returns true
if and only if self == 2^k
for some k
.
§Examples
Basic usage:
use std::num::Saturating;
assert!(Saturating(16u128).is_power_of_two());
assert!(!Saturating(10u128).is_power_of_two());
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2i128), Saturating(5i128) / Saturating(2));
assert_eq!(Saturating(i128::MAX), Saturating(i128::MAX) / Saturating(1));
assert_eq!(Saturating(i128::MIN), Saturating(i128::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i128) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2i16), Saturating(5i16) / Saturating(2));
assert_eq!(Saturating(i16::MAX), Saturating(i16::MAX) / Saturating(1));
assert_eq!(Saturating(i16::MIN), Saturating(i16::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i16) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2i32), Saturating(5i32) / Saturating(2));
assert_eq!(Saturating(i32::MAX), Saturating(i32::MAX) / Saturating(1));
assert_eq!(Saturating(i32::MIN), Saturating(i32::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i32) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2i64), Saturating(5i64) / Saturating(2));
assert_eq!(Saturating(i64::MAX), Saturating(i64::MAX) / Saturating(1));
assert_eq!(Saturating(i64::MIN), Saturating(i64::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i64) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2i8), Saturating(5i8) / Saturating(2));
assert_eq!(Saturating(i8::MAX), Saturating(i8::MAX) / Saturating(1));
assert_eq!(Saturating(i8::MIN), Saturating(i8::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i8) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2isize), Saturating(5isize) / Saturating(2));
assert_eq!(Saturating(isize::MAX), Saturating(isize::MAX) / Saturating(1));
assert_eq!(Saturating(isize::MIN), Saturating(isize::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0isize) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2u128), Saturating(5u128) / Saturating(2));
assert_eq!(Saturating(u128::MAX), Saturating(u128::MAX) / Saturating(1));
assert_eq!(Saturating(u128::MIN), Saturating(u128::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u128) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2u16), Saturating(5u16) / Saturating(2));
assert_eq!(Saturating(u16::MAX), Saturating(u16::MAX) / Saturating(1));
assert_eq!(Saturating(u16::MIN), Saturating(u16::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u16) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2u32), Saturating(5u32) / Saturating(2));
assert_eq!(Saturating(u32::MAX), Saturating(u32::MAX) / Saturating(1));
assert_eq!(Saturating(u32::MIN), Saturating(u32::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u32) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2u64), Saturating(5u64) / Saturating(2));
assert_eq!(Saturating(u64::MAX), Saturating(u64::MAX) / Saturating(1));
assert_eq!(Saturating(u64::MIN), Saturating(u64::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u64) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2u8), Saturating(5u8) / Saturating(2));
assert_eq!(Saturating(u8::MAX), Saturating(u8::MAX) / Saturating(1));
assert_eq!(Saturating(u8::MIN), Saturating(u8::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u8) / Saturating(0);
The resulting type after applying the /
operator.
use std::num::Saturating;
assert_eq!(Saturating(2usize), Saturating(5usize) / Saturating(2));
assert_eq!(Saturating(usize::MAX), Saturating(usize::MAX) / Saturating(1));
assert_eq!(Saturating(usize::MIN), Saturating(usize::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0usize) / Saturating(0);
The resulting type after applying the /
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.