AutoMLDataSplitConfig - Amazon SageMaker (original) (raw)
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.
Contents
ValidationFraction
The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting this value to be less than 0.5.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 1.
Required: No
See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:
AutoMLDataSource
AutoMLJobArtifacts
Did this page help you? - Yes
Thanks for letting us know we're doing a good job!
If you've got a moment, please tell us what we did right so we can do more of it.
Did this page help you? - No
Thanks for letting us know this page needs work. We're sorry we let you down.
If you've got a moment, please tell us how we can make the documentation better.