构建系统 - ESP32-S2 - — ESP-IDF 编程指南 latest 文档 (original) (raw)

构建系统

[English]

本文档主要介绍 ESP-IDF 构建系统的实现原理以及“组件”等相关概念。如需了解如何组织和构建新的 ESP-IDF 项目或组件,请阅读本文档。

概述

一个 ESP-IDF 项目可以看作是多个不同组件的集合,例如一个显示当前湿度的网页服务器会包含以下组件:

ESP-IDF 可以显式地指定和配置每个组件。在构建项目的时候,构建系统会前往 ESP-IDF 目录、项目目录和用户自定义组件目录(可选)中查找所有组件,允许用户通过文本菜单系统配置 ESP-IDF 项目中用到的每个组件。在所有组件配置结束后,构建系统开始编译整个项目。

概念

请注意,以下内容并不属于项目的组成部分:

使用构建系统

idf.py

idf.py 命令行工具提供了一个前端,可以帮助你轻松管理项目的构建过程,它管理了以下工具:

可通过 idf.py 配置构建系统,具体可参考 IDF 前端工具

直接使用 CMake

为了方便,idf.py 已经封装了 CMake 命令。你也可以直接调用 CMake。

idf.py 在执行某些操作时,它会打印运行的每条命令以便参考。例如,运行 idf.py build 命令等同于在 bash shell 中运行以下命令(或在 Windows 命令提示符中运行类似的命令):

mkdir -p build cd build cmake .. -G Ninja # 或者 'Unix Makefiles' ninja

在上面的命令列表中,cmake 命令对项目进行配置,并生成用于最终构建工具的构建文件。在这个例子中,最终构建工具是 Ninja: 运行 ninja 来构建项目。

没有必要多次运行 cmake。第一次构建后,往后每次只需运行 ninja 即可。如果项目需要重新配置,ninja 会自动重新调用 cmake

若在 CMake 中使用 ninjamake,则多数 idf.py 子命令也会有其对应的目标,例如在构建目录下运行 make menuconfigninja menuconfig 与运行 idf.py menuconfig 是相同的。

备注

如果你已经熟悉了 CMake,那么可能会发现 ESP-IDF 的 CMake 构建系统不同寻常,为了减少样板文件,该系统封装了 CMake 的许多功能。请参考 编写纯 CMake 组件 以编写更多 “CMake 风格”的组件。

使用 Ninja/Make 来烧录

可以直接使用 ninja 或 make 运行如下命令来构建项目并烧录:

或:

可用的目标还包括:flashapp-flash (仅用于 app)、bootloader-flash (仅用于引导加载程序)。

以这种方式烧录时,可以通过设置 ESPPORTESPBAUD 环境变量来指定串口设备和波特率。可以在操作系统或 IDE 项目中设置该环境变量,或者直接在命令行中进行设置:

ESPPORT=/dev/ttyUSB0 ninja flash

备注

在命令的开头为环境变量赋值属于 Bash shell 的语法,可在 Linux 、macOS 和 Windows 的类 Bash shell 中运行,但在 Windows Command Prompt 中无法运行。

或:

make -j3 app-flash ESPPORT=COM4 ESPBAUD=2000000

备注

在命令末尾为变量赋值属于 make 的语法,适用于所有平台的 make

在 IDE 中使用 CMake

还可以使用集成了 CMake 的 IDE,仅需将项目 CMakeLists.txt 文件的路径告诉 IDE 即可。集成 CMake 的 IDE 通常会有自己的构建工具(CMake 称之为“生成器”),它是组成 IDE 的一部分,用来构建源文件。

向 IDE 中添加除 build 目标以外的自定义目标(如添加 “flash” 目标到 IDE)时,建议调用 idf.py 命令来执行这些“特殊”的操作。

有关将 ESP-IDF 同 CMake 集成到 IDE 中的详细信息,请参阅 构建系统的元数据

设置 Python 解释器

ESP-IDF 适用于 Python 3.9 以上版本。

idf.py 和其他的 Python 脚本会使用默认的 Python 解释器运行,如 python。你可以通过 python3 $IDF_PATH/tools/idf.py ... 命令切换到别的 Python 解释器,或者通过设置 shell 别名或其他脚本来简化该命令。

如果直接使用 CMake,运行 cmake -D PYTHON=python3 ...,CMake 会使用传入的值覆盖默认的 Python 解释器。

如果使用集成 CMake 的 IDE,可以在 IDE 的图形用户界面中给名为 PYTHON 的 CMake cache 变量设置新的值来覆盖默认的 Python 解释器。

如果想在命令行中更优雅地管理 Python 的各个版本,请查看 pyenvvirtualenv 工具,它们会帮助你更改默认的 python 版本。

示例项目

示例项目的目录树结构可能如下所示:

该示例项目 "myProject" 包含以下组成部分:

每个组件目录都包含一个 CMakeLists.txt 文件,里面会定义一些变量以控制该组件的构建过程,以及其与整个项目的集成。更多详细信息请参阅 组件 CMakeLists 文件

每个组件还可以包含一个 Kconfig 文件,它用于定义 menuconfig 时展示的 组件配置 选项。某些组件可能还会包含 Kconfig.projbuildproject_include.cmake 特殊文件,它们用于 覆盖项目的部分设置

项目 CMakeLists 文件

每个项目都有一个顶层 CMakeLists.txt 文件,包含整个项目的构建设置。默认情况下,项目 CMakeLists 文件会非常小。

最小 CMakeLists 文件示例

最小项目:

cmake_minimum_required(VERSION 3.16) include($ENV{IDF_PATH}/tools/cmake/project.cmake) project(myProject)

必要部分

每个项目都要按照上面显示的顺序添加上述三行代码:

可选的项目变量

以下这些变量都有默认值,用户可以覆盖这些变量值以自定义构建行为。更多实现细节,请参阅 /tools/cmake/project.cmake 文件。

以上变量中的路径可以是绝对路径,或者是相对于项目目录的相对路径。

请使用 cmake 中的 set 命令 来设置这些变量,如 set(VARIABLE "VALUE")。请注意,set() 命令需放在 include(...) 之前,cmake_minimum(...) 之后。

重命名 main 组件

构建系统会对 main 组件进行特殊处理。假如 main 组件位于预期的位置(即 ${PROJECT_PATH}/main),那么它会被自动添加到构建系统中。其他组件也会作为其依赖项被添加到构建系统中,这使用户免于处理依赖关系,并提供即时可用的构建功能。重命名 main 组件会减轻上述这些幕后工作量,但要求用户指定重命名后的组件位置,并手动为其添加依赖项。重命名 main 组件的步骤如下:

  1. 重命名 main 目录。
  2. 在项目 CMakeLists.txt 文件中设置 EXTRA_COMPONENT_DIRS,并添加重命名后的 main 目录。
  3. 在组件的 CMakeLists.txt 文件中设置 COMPONENT_REQUIRESCOMPONENT_PRIV_REQUIRES 以指定依赖项。

覆盖默认的构建规范

构建系统设置了一些全局的构建规范(编译标志、定义等),这些规范可用于编译来自所有组件的所有源文件。

例如,其中一个默认的构建规范是编译选项 Wextra。假设一个用户想用 Wno-extra 来覆盖这个选项, 应在 project() 之后进行:

cmake_minimum_required(VERSION 3.16) include($ENV{IDF_PATH}/tools/cmake/project.cmake) project(myProject)

idf_build_set_property(COMPILE_OPTIONS "-Wno-error" APPEND)

这确保了用户设置的编译选项不会被默认的构建规范所覆盖,因为默认的构建规范是在 project() 内设置的。

组件 CMakeLists 文件

每个项目都包含一个或多个组件,这些组件可以是 ESP-IDF 的一部分,可以是项目自身组件目录的一部分,也可以从自定义组件目录添加(见上文)。

组件是 COMPONENT_DIRS 列表中包含 CMakeLists.txt 文件的任何目录。

搜索组件

搜索 COMPONENT_DIRS 中的目录列表以查找项目的组件,此列表中的目录可以是组件自身(即包含 CMakeLists.txt 文件的目录),也可以是子目录为组件的顶级目录。

当 CMake 运行项目配置时,它会记录本次构建包含的组件列表,它可用于调试某些组件的添加/排除。

同名组件

ESP-IDF 在搜索所有待构建的组件时,会按照以下优先级搜索组件目录(从高到低):

如果有两个及以上同名组件,构建系统会使用优先级更高的组件。这使得我们可以在项目中覆盖 ESP-IDF 提供的组件。只需要复制 ESP-IDF 组件到项目目录下,然后修改它。这样可以在修改组件的同时,不修改 ESP-IDF 的源代码。

备注

如果在现有项目中通过将组件移动到一个新位置来覆盖它,项目不会自动看到新组件的路径。请运行 idf.py reconfigure 命令后(或删除项目构建文件夹)再重新构建。

最小组件 CMakeLists 文件

最小组件 CMakeLists.txt 文件通过使用 idf_component_register 将组件添加到构建系统中。

idf_component_register(SRCS "foo.c" "bar.c"

INCLUDE_DIRS "include" REQUIRES mbedtls)

上述命令会构建生成与组件同名的库,并最终被链接到应用程序中。

上述目录通常设置为相对于 CMakeLists.txt 文件的相对路径,当然也可以设置为绝对路径。

还有其它参数可以传递给 idf_component_register,具体可参考 here

有关更完整的 CMakeLists.txt 示例,请参阅 组件依赖示例组件 CMakeLists 示例

预设的组件变量

以下专用于组件的变量可以在组件 CMakeLists 中使用,但不建议修改:

以下变量在项目级别中被设置,但可在组件 CMakeLists 中使用:

构建/项目变量

以下是可作为构建属性的构建/项目变量,可通过组件 CMakeLists.txt 中的 idf_build_get_property 查询其变量值。

其它与构建属性有关的信息请参考 这里

组件编译控制

在编译特定组件的源文件时,可以使用 target_compile_options 函数来传递编译器选项:

target_compile_options(${COMPONENT_LIB} PRIVATE -Wno-unused-variable)

如果给单个源文件指定编译器标志,可以使用 CMake 的 set_source_files_properties 命令:

set_source_files_properties(mysrc.c PROPERTIES COMPILE_FLAGS -Wno-unused-variable )

如果上游代码在编译的时候发出了警告,那这么做可能会很有效。

请注意,上述两条命令只能在组件 CMakeLists 文件的 idf_component_register 命令之后调用。

组件配置

每个组件都可以包含一个 Kconfig 文件,和 CMakeLists.txt 放在同一目录下。Kconfig 文件中包含要添加到该组件配置菜单中的一些配置设置信息。

运行 menuconfig 时,可以在 Component Settings 菜单栏下找到这些设置。

创建一个组件的 Kconfig 文件,最简单的方法就是使用 ESP-IDF 中现有的 Kconfig 文件作为模板,在这基础上进行修改。

有关示例请参阅 添加条件配置。详细信息请参阅 组件配置指南

预处理器定义

ESP-IDF 构建系统会在命令行中添加以下 C 预处理器定义:

组件依赖

编译各个组件时,ESP-IDF 系统会递归评估其依赖项。这意味着每个组件都需要声明它所依赖的组件,即 “requires”。

编写组件

idf_component_register(... REQUIRES mbedtls PRIV_REQUIRES console spiffs)

如果组件仅支持某些硬件目标(IDF_TARGET 的值),则可以在 idf_component_register 中指定 REQUIRED_IDF_TARGETS 来声明这个需求。在这种情况下,如果构建系统导入了不支持当前硬件目标的组件时就会报错。

备注

在 CMake 中,REQUIRESPRIV_REQUIRES 是 CMake 函数 target_link_libraries(... PUBLIC ...)target_link_libraries(... PRIVATE ...) 的近似包装。

组件依赖示例

假设现在有一个 car 组件,它需要使用 engine 组件,而 engine 组件需要使用 spark_plug 组件:

Car 组件

car.h 头文件是 car 组件的公共接口。该头文件直接包含了 engine.h,这是因为它需要使用 engine.h 中的一些声明:

/* car.h */ #include "engine.h"

#ifdef ENGINE_IS_HYBRID #define CAR_MODEL "Hybrid" #endif

同时 car.c 也包含了 car.h:

/* car.c */ #include "car.h"

这代表文件 car/CMakeLists.txt 需要声明 car 需要 engine

idf_component_register(SRCS "car.c" INCLUDE_DIRS "." REQUIRES engine)

Engine 组件

engine 组件也有一个公共头文件 include/engine.h,但这个头文件更为简单:

/* engine.h */ #define ENGINE_IS_HYBRID

void engine_start(void);

engine.c 中执行:

/* engine.c */ #include "engine.h" #include "spark_plug.h"

...

在该组件中,engine 依赖于 spark_plug,但这是私有依赖关系。编译 engine.c 需要 spark_plug.h 但不需要包含 engine.h

这代表文件 engine/CMakeLists.txt 可以使用 PRIV_REQUIRES

idf_component_register(SRCS "engine.c" INCLUDE_DIRS "include" PRIV_REQUIRES spark_plug)

因此,car 组件中的源文件不需要在编译器搜索路径中添加 spark_plug include 目录。这可以加快编译速度,避免编译器命令行过于的冗长。

Spark Plug 组件

spark_plug 组件没有依赖项,它有一个公共头文件 spark_plug.h,但不包含其他组件的头文件。

这代表 spark_plug/CMakeLists.txt 文件不需要任何 REQUIRESPRIV_REQUIRES

idf_component_register(SRCS "spark_plug.c" INCLUDE_DIRS ".")

源文件 Include 目录

每个组件的源文件都是用这些 Include 路径目录编译的,这些路径在传递给 idf_component_register 的参数中指定:

idf_component_register(.. INCLUDE_DIRS "include" PRIV_INCLUDE_DIRS "other")

主要组件依赖项

main 组件比较特别,因为它在构建过程中自动依赖所有其他组件。所以不需要向这个组件传递 REQUIRESPRIV_REQUIRES。有关不再使用 main 组件时需要更改哪些内容,请参考 重命名 main 组件

通用组件依赖项

为避免重复性工作,各组件都用自动依赖一些“通用” IDF 组件,即使它们没有被明确提及。这些组件的头文件会一直包含在构建系统中。

通用组件包括:cxx、newlib、freertos、esp_hw_support、heap、log、soc、hal、esp_rom、esp_common、esp_system。

在构建中导入组件

备注

如果使用最小组件列表,某些功能和配置(如 esp_psram 或 espcoredump 组件提供的功能和配置)可能默认无法在项目中使用。使用 COMPONENTS 变量时,请确保包含所有必要的组件。同样地,使用 MINIMAL_BUILD 构建属性时,请确保在组件注册时通过 REQUIRESPRIV_REQUIRES 参数指定所有所需组件。

循环依赖

一个项目中可能包含组件 A 和组件 B,而组件 A 依赖(REQUIRESPRIV_REQUIRES)组件 B,组件 B 又依赖组件 A。这就是所谓的依赖循环或循环依赖。

CMake 通常会在链接器命令行上重复两次组件库名称来自动处理循环依赖。然而这种方法并不总是有效,还是可能构建失败并出现关于 “Undefined reference to ...” 的链接器错误,这通常是由于引用了循环依赖中某一组件中定义的符号。如果存在较大的循环依赖关系,即 A->B->C->D->A,这种情况极有可能发生。

最好的解决办法是重构组件以消除循环依赖关系。在大多数情况下,没有循环依赖的软件架构具有模块化和分层清晰的特性,并且从长远来看更容易维护。然而,移除循环依赖关系并不容易做到。

要绕过由循环依赖引起的链接器错误,最简单的解决方法是增加其中一个组件库的 CMake LINK_INTERFACE_MULTIPLICITY 属性。 这会让 CMake 在链接器命令行上对此库及其依赖项重复两次以上。

例如:

set_property(TARGET ${COMPONENT_LIB} APPEND PROPERTY LINK_INTERFACE_MULTIPLICITY 3)

高级解决方法:未定义符号

如果只有一两个符号导致循环依赖,而所有其他依赖都是线性的,那么有一种替代方法可以避免链接器错误:在链接时将“反向”依赖所需的特定符号指定为未定义符号。

例如,如果组件 A 依赖于组件 B,但组件 B 也需要引用组件 A 的 reverse_ops (但不依赖组件 A 中的其他内容),那么你可以在组件 B 的 CMakeLists.txt 中添加如下一行,以在链接时避免这出现循环。

该符号是由“组件 A”在链接时提供

target_link_libraries(${COMPONENT_LIB} INTERFACE "-u reverse_ops")

请参考 target_link_libraries 文档以了解更多关于此 CMake 函数的信息。

构建系统中依赖处理的实现细节

组件依赖顺序

BUILD_COMPONENTS 变量中组件的顺序决定了构建过程中的其它顺序,包括:

添加链接时依赖项

ESP-IDF 的 CMake 辅助函数 idf_component_add_link_dependency 可以在组件之间添加仅作用于链接时的依赖关系。绝大多数情况下,我们都建议你使用 idf_component_register 中的 PRIV_REQUIRES 功能来构建依赖关系。然而在某些情况下,还是有必要添加另一个组件对当前组件的链接时依赖,即反转 PRIV_REQUIRES 中的依赖关系(参考示例:覆盖默认芯片驱动程序)。

要使另一个组件在链接时依赖于这个组件:

idf_component_add_link_dependency(FROM other_component)

请将上述行置于 idf_component_register 行之后。

也可以通过名称指定两个组件:

idf_component_add_link_dependency(FROM other_component TO that_component)

覆盖项目的部分设置

project_include.cmake

如果组件的某些构建行为需要在组件 CMakeLists 文件之前被执行,你可以在组件目录下创建名为 project_include.cmake 的文件,project.cmake 在运行过程中会导入此 CMake 文件。

project_include.cmake 文件在 ESP-IDF 内部使用,以定义项目范围内的构建功能,比如 esptool.py 的命令行参数和 bootloader 这个特殊的应用程序。

与组件 CMakeLists.txt 文件有所不同,在导入 project_include.cmake 文件的时候,当前源文件目录(即 CMAKE_CURRENT_SOURCE_DIR 和工作目录)为项目目录。如果想获得当前组件的绝对路径,可以使用 COMPONENT_PATH 变量。

请注意,project_include.cmake 对于大多数常见的组件并不是必需的。例如给项目添加 include 搜索目录,给最终的链接步骤添加 LDFLAGS 选项等等都可以通过 CMakeLists.txt 文件来自定义。详细信息请参考 可选的项目变量

project_include.cmake 文件会按照 BUILD_COMPONENTS 变量中组件的顺序(由 CMake 记录)依次导入。即只有在当前组件所有依赖组件的 project_include.cmake 文件都被导入后,当前组件的 project_include.cmake 文件才会被导入,除非两个组件在同一个依赖闭环中。如果某个 project_include.cmake 文件依赖于另一组件设置的变量,则要特别注意上述情况。更多详情请参阅 构建系统中依赖处理的实现细节

project_include.cmake 文件中设置变量或目标时要格外小心,这些值被包含在项目的顶层 CMake 文件中,因此他们会影响或破坏所有组件的功能。

Kconfig.projbuild

project_include.cmake 类似,也可以为组件定义一个 Kconfig 文件以实现全局的 组件配置。如果要在 menuconfig 的顶层添加配置选项,而不是在 “Component Configuration” 子菜单中,则可以在 CMakeLists.txt 文件所在目录的 Kconfig.projbuild 文件中定义这些选项。

在此文件中添加配置时要小心,因为这些配置会包含在整个项目配置中。在可能的情况下,请为 组件配置 创建 Kconfig 文件。

详情请参阅配置指南中的 Kconfig 文件 章节。

通过封装对现有函数进行重新定义或扩展

链接器具有封装功能,可以重新定义或扩展现有 ESP-IDF 函数的行为。如需封装函数,你需要在项目的 CMakeLists.txt 文件中提供以下 CMake 声明:

target_link_libraries(${COMPONENT_LIB} INTERFACE "-Wl,--wrap=function_to_redefine")

其中,function_to_redefine 为需要被重新定义或扩展的函数名称。启用此选项后,链接器将把二进制库中所有对 function_to_redefine 函数的调用改为对 __wrap_function_to_redefine 函数的调用。因此,你必须在应用程序中定义这一符号。

链接器会提供一个名为 __real_function_to_redefine 的新符号,指向将被重新定义的函数的原有实现。由此,可以从新的实现中调用该函数,从而对原有实现进行扩展。

请参考 build_system/wrappers 示例,了解其详细原理。更多细节请参阅 examples/build_system/wrappers/README.md

覆盖默认引导加载程序

由于 ESP-IDF 中存在可选目录 bootloader_components,因此可以覆盖默认的 ESP-IDF 引导加载程序。覆盖前,应定义一个 bootloader_components/main 组件,使项目目录如下所示:

此处的 my_bootloader.c 文件会成为新引导加载程序的源代码,这意味着它需要执行所有必要的操作来设置并从 flash 中加载 main 应用程序。

还可以根据特定的条件来替换引导加载程序,例如替换指定目标芯片的引导加载程序。这可以通过 BOOTLOADER_IGNORE_EXTRA_COMPONENT CMake 变量实现,该列表会让 ESP-IDF 引导加载项目忽略 bootloader_components 中的指定组件,不对其进行编译。例如,如果希望使用 ESP32 目标芯片的默认引导加载程序,myProject/CMakeLists.txt 应如下所示:

include($ENV{IDF_PATH}/tools/cmake/project.cmake)

if(${IDF_TARGET} STREQUAL "esp32") set(BOOTLOADER_IGNORE_EXTRA_COMPONENT "main") endif()

project(main)

值得注意的是,这还可以用于除 main 之外的其他引导加载程序组件。在任何情况下,都不能指定前缀 bootloader_component

请参考 custom_bootloader/bootloader_override 查看覆盖默认引导加载程序的示例。

与常规应用程序类似,通过构建属性 BOOTLOADER_EXTRA_COMPONENT_DIRS 可以将不在 bootloader_component 中的外部组件作为引导加载程序的一部分进行构建。可以只引用一个组件,也可以引用包含多个组件的路径。例如:

include($ENV{IDF_PATH}/tools/cmake/project.cmake)

idf_build_set_property(BOOTLOADER_EXTRA_COMPONENT_DIRS "/path/to/extra/component/" APPEND)

project(main)

请参考示例 custom_bootloader/bootloader_extra_dir,查看如何向引导加载程序构建过程添加额外的组件。

仅配置组件

仅配置组件是一类不包含源文件的特殊组件,仅包含 Kconfig.projbuildKconfigCMakeLists.txt 文件,该 CMakeLists.txt 文件仅有一行代码,调用了 idf_component_register() 函数。此函数会将组件导入到项目构建中,但不会构建任何库,也不会将头文件添加到任何 include 搜索路径中。

CMake 调试

请查看 CMake v3.16 官方文档 获取更多关于 CMake 和 CMake 命令的信息。

调试 ESP-IDF CMake 构建系统的一些技巧:

当从项目 CMakeLists 文件导入时,project.cmake 文件会定义工具模块和全局变量,并在系统环境中没有设置 IDF_PATH 时设置 IDF_PATH

同时还定义了一个自定义版本的内置 CMake project 函数, 这个函数被覆盖,以添加所有 ESP-IDF 特定的项目功能。

警告未定义的变量

默认情况下,警告未定义的变量这一功能是关闭的。

可通过将 --warn-uninitialized 标志传递给 CMake 或通过将 --cmake-warn-uninitialized 传递给 idf.py 来使能这一功能。这样,如果在构建的过程中引用了未定义的变量,CMake 会打印警告。这对查找有错误的 CMake 文件非常有用。

更多信息,请参考文件 /tools/cmake/project.cmake 以及 /tools/cmake/ 中支持的函数。

组件 CMakeLists 示例

因为构建环境试图设置大多数情况都能工作的合理默认值,所以组件 CMakeLists.txt 文件可能非常小,甚至是空的,请参考 最小组件 CMakeLists 文件。但有些功能往往需要覆盖 预设的组件变量 才能实现。

以下是组件 CMakeLists 文件的更高级的示例。

添加条件配置

配置系统可用于根据项目配置中选择的选项有条件地编译某些文件。

Kconfig:

config FOO_ENABLE_BAR bool "Enable the BAR feature." help This enables the BAR feature of the FOO component.

CMakeLists.txt:

set(srcs "foo.c" "more_foo.c")

if(CONFIG_FOO_ENABLE_BAR) list(APPEND srcs "bar.c") endif()

idf_component_register(SRCS "${srcs}" ...)

上述示例使用了 CMake 的 if 函数和 list APPEND 函数。

也可用于选择或删除某一实现,如下所示:

Kconfig:

config ENABLE_LCD_OUTPUT bool "Enable LCD output." help Select this if your board has a LCD.

config ENABLE_LCD_CONSOLE bool "Output console text to LCD" depends on ENABLE_LCD_OUTPUT help Select this to output debugging output to the lcd

config ENABLE_LCD_PLOT bool "Output temperature plots to LCD" depends on ENABLE_LCD_OUTPUT help Select this to output temperature plots

CMakeLists.txt:

if(CONFIG_ENABLE_LCD_OUTPUT) set(srcs lcd-real.c lcd-spi.c) else() set(srcs lcd-dummy.c) endif()

如果启用了控制台或绘图功能,则需要加入字体

if(CONFIG_ENABLE_LCD_CONSOLE OR CONFIG_ENABLE_LCD_PLOT) list(APPEND srcs "font.c") endif()

idf_component_register(SRCS "${srcs}" ...)

硬件目标的条件判断

CMake 文件可以使用 IDF_TARGET 变量来获取当前的硬件目标。

此外,如果当前的硬件目标是 xyz (即 IDF_TARGET=xyz),那么 Kconfig 变量 CONFIG_IDF_TARGET_XYZ 同样也会被设置。

请注意,组件可以依赖 IDF_TARGET 变量,但不能依赖这个 Kconfig 变量。同样也不可在 CMake 文件的 include 语句中使用 Kconfig 变量,在这种上下文中可以使用 IDF_TARGET

生成源代码

有些组件的源文件可能并不是由组件本身提供,而必须从另外的文件生成。假设组件需要一个头文件,该文件由 BMP 文件转换后(使用 bmp2h 工具)的二进制数据组成,然后将头文件包含在名为 graphics_lib.c 的文件中:

add_custom_command(OUTPUT logo.h COMMAND bmp2h -i ${COMPONENT_DIR}/logo.bmp -o log.h DEPENDS ${COMPONENT_DIR}/logo.bmp VERBATIM)

add_custom_target(logo DEPENDS logo.h) add_dependencies(${COMPONENT_LIB} logo)

set_property(DIRECTORY "${COMPONENT_DIR}" APPEND PROPERTY ADDITIONAL_MAKE_CLEAN_FILES logo.h)

这个示例改编自 CMake 的一则 FAQ,其中还包含了一些同样适用于 ESP-IDF 构建系统的示例。

这个示例会在当前目录(构建目录)中生成 logo.h 文件,而 logo.bmp 会随组件一起提供在组件目录中。因为 logo.h 是一个新生成的文件,一旦项目需要清理,该文件也应该要被清除。因此,要将该文件添加到 ADDITIONAL_MAKE_CLEAN_FILES 属性中。

备注

如果需要生成文件作为项目 CMakeLists.txt 的一部分,而不是作为组件 CMakeLists.txt 的一部分,此时需要使用 ${PROJECT_PATH} 替代 ${COMPONENT_DIR},使用 ${PROJECT_NAME}.elf 替代 ${COMPONENT_LIB}

如果某个源文件是从其他组件中生成,且包含 logo.h 文件,则需要调用 add_dependencies, 在这两个组件之间添加一个依赖项,以确保组件源文件按照正确顺序进行编译。

嵌入二进制数据

有时你的组件希望使用一个二进制文件或者文本文件,但是你又不希望将它们重新格式化为 C 源文件。

这时,你可以在组件注册中指定 EMBED_FILES 参数,用空格分隔要嵌入的文件名称:

idf_component_register(... EMBED_FILES server_root_cert.der)

或者,如果文件是字符串,则可以使用 EMBED_TXTFILES 变量,把文件的内容转成以 null 结尾的字符串嵌入:

idf_component_register(... EMBED_TXTFILES server_root_cert.pem)

文件的内容会被添加到 flash 的 .rodata 段,用户可以通过符号名来访问,如下所示:

extern const uint8_t server_root_cert_pem_start[] asm("_binary_server_root_cert_pem_start"); extern const uint8_t server_root_cert_pem_end[] asm("_binary_server_root_cert_pem_end");

符号名会根据文件全名生成,如 EMBED_FILES 中所示,字符 /. 等都会被下划线替代。符号名称中的 _binary 前缀由 objcopy 命令添加,对文本文件和二进制文件都是如此。

如果要将文件嵌入到项目中,而非组件中,可以调用 target_add_binary_data 函数:

target_add_binary_data(myproject.elf "main/data.bin" TEXT)

并将这行代码放在项目 CMakeLists.txt 的 project() 命令之后,修改 myproject.elf 为你自己的项目名。如果最后一个参数是 TEXT,那么构建系统会嵌入以 null 结尾的字符串,如果最后一个参数被设置为 BINARY,则将文件内容按照原样嵌入。

有关使用此技术的示例,请查看 file_serving 示例 protocols/http_server/file_serving/main/CMakeLists.txt 中的 main 组件,两个文件会在编译时加载并链接到固件中。

也可以嵌入生成的文件:

add_custom_command(OUTPUT my_processed_file.bin COMMAND my_process_file_cmd my_unprocessed_file.bin) target_add_binary_data(my_target "my_processed_file.bin" BINARY)

上述示例中,my_processed_file.bin 是通过命令 my_process_file_cmd 从文件 my_unprocessed_file.bin 中生成,然后嵌入到目标中。

使用 DEPENDS 参数来指明对目标的依赖性:

add_custom_target(my_process COMMAND ...) target_add_binary_data(my_target "my_embed_file.bin" BINARY DEPENDS my_process)

target_add_binary_dataDEPENDS 参数确保目标首先执行。

代码和数据的存放

ESP-IDF 还支持自动生成链接脚本,它允许组件通过链接片段文件定义其代码和数据在内存中的存放位置。构建系统会处理这些链接片段文件,并将处理后的结果扩充进链接脚本,从而指导应用程序二进制文件的链接过程。更多详细信息与快速上手指南,请参阅 链接脚本生成机制

完全覆盖组件的构建过程

当然,在有些情况下,上面提到的方法不一定够用。如果组件封装了另一个第三方组件,而这个第三方组件并不能直接在 ESP-IDF 的构建系统中工作,在这种情况下,就需要放弃 ESP-IDF 的构建系统,改为使用 CMake 的 ExternalProject 功能。组件 CMakeLists 示例如下:

用于 quirc 的外部构建过程,在源目录中运行

并生成 libquirc.a

externalproject_add(quirc_build PREFIX ${COMPONENT_DIR} SOURCE_DIR ${COMPONENT_DIR}/quirc CONFIGURE_COMMAND "" BUILD_IN_SOURCE 1 BUILD_COMMAND make CC=${CMAKE_C_COMPILER} libquirc.a INSTALL_COMMAND "" )

将 libquirc.a 添加到构建系统中

add_library(quirc STATIC IMPORTED GLOBAL) add_dependencies(quirc quirc_build)

set_target_properties(quirc PROPERTIES IMPORTED_LOCATION ${COMPONENT_DIR}/quirc/libquirc.a) set_target_properties(quirc PROPERTIES INTERFACE_INCLUDE_DIRECTORIES ${COMPONENT_DIR}/quirc/lib)

set_directory_properties( PROPERTIES ADDITIONAL_MAKE_CLEAN_FILES "${COMPONENT_DIR}/quirc/libquirc.a")

(上述 CMakeLists.txt 可用于创建名为 quirc 的组件,该组件使用自己的 Makefile 构建 quirc 项目。)

ExternalProject 的依赖与构建清理

对于外部项目的构建,CMake 会有一些不同寻常的行为:

构建外部项目的最佳方法取决于项目本身、其构建系统,以及是否需要频繁重新编译项目。

自定义 sdkconfig 的默认值

对于示例工程或者其他你不想指定完整 sdkconfig 配置的项目,但是你确实希望覆盖 ESP-IDF 默认值中的某些键值,则可以在项目中创建 sdkconfig.defaults 文件。重新创建新配置时将会用到此文件,另外在 sdkconfig 没有设置新配置值时,上述文件也会被用到。

如若需要覆盖此文件的名称或指定多个文件,请设置 SDKCONFIG_DEFAULTS 环境变量或在顶层 CMakeLists.txt 文件中设置 SDKCONFIG_DEFAULTS。非绝对路径的文件名将以当前项目的相对路径来解析。

在指定多个文件时,使用分号作为分隔符。先列出的文件将会先应用。如果某个键值在多个文件里定义,后面文件的定义会覆盖前面文件的定义。

一些 IDF 示例中包含了 sdkconfig.ci 文件。该文件是 CI(持续集成)测试框架的一部分,在正常构建过程中会被忽略。

依赖于硬件目标的 sdkconfig 默认值

当且仅当 sdkconfig.defaults 文件存在时,构建系统还将尝试从 sdkconfig.defaults.TARGET_NAME 文件中加载默认值,其中 IDF_TARGET 的值为 TARGET_NAME。例如,对于 esp32 这个目标芯片,sdkconfig 的默认值会首先从 sdkconfig.defaults 获取,然后再从 sdkconfig.defaults.esp32 获取。当没有通用的默认设置时,仍需创建一个空的 sdkconfig.defaults 文件,以便构建系统可以识别任何其他与目标芯片相关的 sdkconfig.defaults.TARGET_NAME 文件。

如果使用 SDKCONFIG_DEFAULTS 覆盖默认文件的名称,则硬件目标的默认文件名也会从 SDKCONFIG_DEFAULTS 值中派生。如果 SDKCONFIG_DEFAULTS 中有多个文件,硬件目标文件会在引入该硬件目标文件的文件之后应用, 而 SDKCONFIG_DEFAULTS 中所有其它后续文件则会在硬件目标文件之后应用 。

例如,如果 SDKCONFIG_DEFAULTS="sdkconfig.defaults;sdkconfig_devkit1",并且在同一文件夹中有一个 sdkconfig.defaults.esp32 文件,那么这些文件将按以下顺序应用:(1) sdkconfig.defaults (2) sdkconfig.defaults.esp32 (3) sdkconfig_devkit1。

关于项目配置的详细信息,请参阅 项目配置指南。关于配置文件的详细信息,请参阅 配置文件的结构和关系

flash 参数

有些情况下,我们希望在没有 IDF 时也能烧写目标板,为此,我们希望可以保存已构建的二进制文件、esptool.py 和 esptool write_flash 命令的参数。可以通过编写一段简单的脚本来保存二进制文件和 esptool.py。

运行项目构建之后,构建目录将包含项目二进制输出文件(.bin 文件),同时也包含以下烧录数据文件:

你可以参照如下命令将任意烧录参数文件传递给 esptool.py:

python esptool.py --chip esp32s2 write_flash @build/flash_project_args

也可以手动复制参数文件中的数据到命令行中执行。

构建目录中还包含生成的 flasher_args.json 文件,此文件包含 JSON 格式的项目烧录信息,可用于 idf.py 和其它需要项目构建信息的工具。

构建引导加载程序

引导加载程序是 /components/bootloader/subproject 内部独特的“子项目”,它有自己的项目 CMakeLists.txt 文件,能够构建独立于主项目的 .ELF.BIN 文件,同时它又与主项目共享配置和构建目录。

子项目通过 /components/bootloader/project_include.cmake 文件作为外部项目插入到项目的顶层,主构建进程会运行子项目的 CMake,包括查找组件(主项目使用的组件的子集),生成引导加载程序专用的配置文件(从主 sdkconfig 文件中派生)。

编写纯 CMake 组件

ESP-IDF 构建系统用“组件”的概念“封装”了 CMake,并提供了很多帮助函数来自动将这些组件集成到项目构建当中。

然而,“组件”概念的背后是一个完整的 CMake 构建系统,因此可以制作纯 CMake 组件。

下面是使用纯 CMake 语法为 json 组件编写的最小 CMakeLists 文件的示例:

add_library(json STATIC cJSON/cJSON.c cJSON/cJSON_Utils.c)

target_include_directories(json PUBLIC cJSON)

组件中使用第三方 CMake 项目

CMake 在许多开源的 C/C++ 项目中广泛使用,用户可以在自己的应用程序中使用开源代码。CMake 构建系统的一大好处就是可以导入这些第三方的项目,有时候甚至不用做任何改动。这就允许用户使用当前 ESP-IDF 组件尚未提供的功能,或者使用其它库来实现相同的功能。

假设 main 组件需要导入一个假想库 foo,相应的组件 CMakeLists 文件如下所示:

注册组件

idf_component_register(...)

设置 foo 项目中的一些 CMake 变量,以控制 foo 的构建过程

set(FOO_BUILD_STATIC OFF) set(FOO_BUILD_TESTS OFF)

创建并导入第三方库目标

add_subdirectory(foo)

foo 目标公开链接至 main 组件

target_link_libraries(main PUBLIC foo)

实际的案例请参考 build_system/cmake/import_lib。请注意,导入第三方库所需要做的工作可能会因库的不同而有所差异。建议仔细阅读第三方库的文档,了解如何将其导入到其它项目中。阅读第三方库的 CMakeLists.txt 文件以及构建结构也会有所帮助。

用这种方式还可以将第三方库封装成 ESP-IDF 的组件。例如 mbedtls 组件就是封装了 mbedtls 项目 得到的。详情请参考 mbedtls 组件的 CMakeLists.txt 文件

每当使用 ESP-IDF 构建系统时,CMake 变量 ESP_PLATFORM 都会被设置为 1。如果要在通用的 CMake 代码加入 IDF 特定的代码时,可以采用 if (ESP_PLATFORM) 的形式加以分隔。

外部库中使用 ESP-IDF 组件

上述示例中假设的是外部库 foo (或 import_lib 示例中的 tinyxml 库)除了常见的 API 如 libc、libstdc++ 等外不需要使用其它 ESP-IDF API。如果外部库需要使用其它 ESP-IDF 组件提供的 API,则需要在外部 CMakeLists.txt 文件中通过添加对库目标 idf::<componentname> 的依赖关系。

例如,在 foo/CMakeLists.txt 文件:

add_library(foo bar.c fizz.cpp buzz.cpp)

if(ESP_PLATFORM)

在 ESP-IDF 中、bar.c 需要包含 spi_flash 组件中的 esp_flash.h

target_link_libraries(foo PRIVATE idf::spi_flash) endif()

组件中使用预建库

还有一种情况是你有一个由其它构建过程生成预建静态库(.a 文件)。

ESP-IDF 构建系统为用户提供了一个实用函数 add_prebuilt_library,能够轻松导入并使用预建库:

add_prebuilt_library(target_name lib_path [REQUIRES req1 req2 ...] [PRIV_REQUIRES req1 req2 ...])

其中:

可选参数 REQUIRESPRIV_REQUIRES 指定对其它组件的依赖性。这些参数与 idf_component_register 的参数的意义相同。

注意预建库的编译目标需与目前的项目相同。预建库的相关参数也要匹配。如果不特别注意,这两个因素可能会导致应用程序中出现 bug。

请查看示例 build_system/cmake/import_prebuilt

在自定义 CMake 项目中使用 ESP-IDF

ESP-IDF 提供了一个模板 CMake 项目,可以基于此轻松创建应用程序。然而在有些情况下,用户可能已有一个现成的 CMake 项目,或者想自己创建一个 CMake 项目,此时就希望将 IDF 中的组件以库的形式链接到用户目标(库/可执行文件)。

可以通过 tools/cmake/idf.cmake 提供的 build system APIs 实现该目标。例如:

cmake_minimum_required(VERSION 3.16) project(my_custom_app C)

导入提供 ESP-IDF CMake 构建系统 API 的 CMake 文件

include($ENV{IDF_PATH}/tools/cmake/idf.cmake)

在构建中导入 ESP-IDF 组件,可以视作等同 add_subdirectory()

但为 ESP-IDF 构建增加额外的构建过程

具体构建过程

idf_build_process(esp32)

创建项目可执行文件

使用其别名 idf::newlib 将其链接到 newlib 组件

add_executable(${CMAKE_PROJECT_NAME}.elf main.c) target_link_libraries(${CMAKE_PROJECT_NAME}.elf idf::newlib)

让构建系统知道项目到可执行文件是什么,从而添加更多的目标以及依赖关系等

idf_build_executable(${CMAKE_PROJECT_NAME}.elf)

build_system/cmake/idf_as_lib 中的示例演示了如何在自定义的 CMake 项目创建一个类似于 Hello World 的应用程序。

ESP-IDF CMake 构建系统 API

ESP-IDF 构建命令

idf_build_get_property(var property [GENERATOR_EXPRESSION])

检索一个 构建属性 _property_,并将其存储在当前作用域可访问的 var 中。特定 GENERATOR_EXPRESSION 将检索该属性的生成器表达式字符串(不是实际值),它可与支持生成器表达式的 CMake 命令一起使用。

idf_build_set_property(property val [APPEND])

设置 构建属性 property 的值为 _val_。特定 APPEND 将把指定的值附加到属性当前值之后。如果该属性之前不存在或当前为空,则指定的值将变为第一个元素/成员。

idf_build_component(component_dir [component_source])

向构建系统提交一个包含组件的 component_dir 目录。相对路径会被转换为相对于当前目录的绝对路径。

一个可选的 component_source 参数可以用于指定组件源。(默认为 "project_components")

这个参数决定了同名组件的优先级。详细信息请参考 同名组件

该参数可以指定如下组件源(优先级从高到低排序):

举个例子,如果有两个组件,组件名都为 "json"。一个组件源被定义为 "project_components",另一个组件源被定义为 "idf_components",那么 "project_components" 中的 "json" 组件会被优先选择。

警告

所有对该命令的调用必须在 idf_build_process 之前执行。该命令并不保证组件在构建过程中会被处理(参见 idf_build_process 中 COMPONENTS 参数说明)。

idf_build_process(target [PROJECT_DIR project_dir] [PROJECT_VER project_ver] [PROJECT_NAME project_name] [SDKCONFIG sdkconfig] [SDKCONFIG_DEFAULTS sdkconfig_defaults] [BUILD_DIR build_dir] [COMPONENTS component1 component2 ...])

为导入 ESP-IDF 组件执行大量的幕后工作,包括组件配置、库创建、依赖性扩展和解析。在这些功能中,对于用户最重要的可能是通过调用每个组件的 idf_component_register 来创建库。该命令为每个组件创建库,这些库可以使用别名来访问,其形式为 idf::_component_name_。 这些别名可以用来将组件链接到用户自己的目标、库或可执行文件上。

该调用要求用 target 参数指定目标芯片。调用的可选参数包括:

idf_build_executable(executable)

指定 ESP-IDF 构建的可执行文件 _executable_。这将添加额外的目标,如与 flash 相关的依赖关系,生成额外的二进制文件等。应在 idf_build_process 之后调用。

idf_build_get_config(var config [GENERATOR_EXPRESSION])

获取指定配置的值。就像构建属性一样,特定 GENERATOR_EXPRESSION 将检索该配置的生成器表达式字符串,而不是实际值,即可以与支持生成器表达式的 CMake 命令一起使用。然而,实际的配置值只有在调用 idf_build_process 后才能知道。

ESP-IDF 构建属性

可以通过使用构建命令 idf_build_get_property 来获取构建属性的值。例如,以下命令可以获取构建过程中使用的 Python 解释器的相关信息。

idf_build_get_property(python PYTHON) message(STATUS "The Python interpreter is: ${python}")

ESP-IDF 组件命令

idf_component_get_property(var component property [GENERATOR_EXPRESSION])

检索一个指定的 component组件属性 _property_,并将其存储在当前作用域可访问的 var 中。指定 GENERATOR_EXPRESSION 将检索该属性的生成器表达式字符串(不是实际值),它可以在支持生成器表达式的 CMake 命令中使用。

idf_component_set_property(component property val [APPEND])

设置指定的 component组件属性property 的值为 _val_。特定 APPEND 将把指定的值追加到属性的当前值后。如果该属性之前不存在或当前为空,指定的值将成为第一个元素/成员。

idf_component_register([[SRCS src1 src2 ...] | [[SRC_DIRS dir1 dir2 ...] [EXCLUDE_SRCS src1 src2 ...]] [INCLUDE_DIRS dir1 dir2 ...] [PRIV_INCLUDE_DIRS dir1 dir2 ...] [REQUIRES component1 component2 ...] [PRIV_REQUIRES component1 component2 ...] [LDFRAGMENTS ldfragment1 ldfragment2 ...] [REQUIRED_IDF_TARGETS target1 target2 ...] [EMBED_FILES file1 file2 ...] [EMBED_TXTFILES file1 file2 ...] [KCONFIG kconfig] [KCONFIG_PROJBUILD kconfig_projbuild] [WHOLE_ARCHIVE])

将一个组件注册到构建系统中。就像 project() CMake 命令一样,该命令应该直接从组件的 CMakeLists.txt 中调用(而不是通过函数或宏),且建议在其他命令之前调用该命令。下面是一些关于在 idf_component_register 之前 不能 调用哪些命令的指南:

对变量进行设置和操作的命令,一般可在 idf_component_register 之前调用。

idf_component_register 的参数包括:

以下内容用于 将数据嵌入到组件中,并在确定组件是否仅用于配置时被视为源文件。这意味着,即使组件没有指定源文件,如果组件指定了以下其中之一,仍然会在内部为组件创建一个静态库。

ESP-IDF 组件属性

组件的属性值可以通过使用构建命令 idf_component_get_property 来获取。例如,以下命令可以获取 freertos 组件的目录。

idf_component_get_property(dir freertos COMPONENT_DIR) message(STATUS "The 'freertos' component directory is: ${dir}")

文件通配 & 增量构建

在 ESP-IDF 组件中添加源文件的首选方法是在 COMPONENT_SRCS 中手动列出它们:

idf_component_register(SRCS library/a.c library/b.c platform/platform.c ...)

这是在 CMake 中手动列出源文件的 最佳实践。然而,当有许多源文件都需要添加到构建中时,这种方法就会很不方便。ESP-IDF 构建系统因此提供了另一种替代方法,即使用 SRC_DIRS 来指定源文件:

idf_component_register(SRC_DIRS library platform ...)

后台会使用通配符在指定的目录中查找源文件。但是请注意,在使用这种方法的时候,如果组件中添加了一个新的源文件,CMake 并不知道重新运行配置,最终该文件也没有被加入构建中。

如果是自己添加的源文件,这种折衷还是可以接受的,因为用户可以触发一次干净的构建,或者运行 idf.py reconfigure 来手动重启 CMake。但是,如果你需要与其他使用 Git 等版本控制工具的开发人员共享项目时,问题就会变得更加困难,因为开发人员有可能会拉取新的版本。

ESP-IDF 中的组件使用了第三方的 Git CMake 集成模块(/tools/cmake/third_party/GetGitRevisionDescription.cmake),任何时候源码仓库的提交记录发生了改变,该模块就会自动重新运行 CMake。即只要拉取了新的 ESP-IDF 版本,CMake 就会重新运行。

对于不属于 ESP-IDF 的项目组件,有以下几个选项供参考:

具体选择哪一方式,就要取决于项目本身,以及项目用户。

构建系统的元数据

为了将 ESP-IDF 集成到 IDE 或者其它构建系统中,CMake 在构建的过程中会在 build/ 目录下生成大量元数据文件。运行 cmakeidf.py reconfigure (或任何其它 idf.py 构建命令),可以重新生成这些元数据文件。

JSON 配置服务器

kconfserver 工具可以帮助 IDE 轻松地与配置系统的逻辑进行集成,它运行在后台,通过使用 stdin 和 stdout 读写 JSON 文件的方式与调用进程交互。

你可以通过 idf.py confserverninja kconfserver 从项目中运行 kconfserver,也可以使用不同的构建生成器来触发类似的目标。

有关 kconfserver 的更多信息,请参阅 esp-idf-kconfig 文档

构建系统内部

构建脚本

ESP-IDF 构建系统的列表文件位于 /tools/cmake 中。实现构建系统核心功能的模块如下

  • build.cmake - 构建相关命令,即构建初始化、检索/设置构建属性、构建处理。
  • component.cmake - 组件相关的命令,如添加组件、检索/设置组件属性、注册组件。
  • kconfig.cmake - 从 Kconfig 文件中生成配置文件(sdkconfig、sdkconfig.h、sdkconfig.cmake 等)。
  • ldgen.cmake - 从链接器片段文件生成最终链接器脚本。
  • target.cmake - 设置构建目标和工具链文件。
  • utilities.cmake - 其它帮助命令。

除了这些文件,还有两个重要的 CMake 脚本在 /tools/cmake 中:

  • idf.cmake - 设置构建参数并导入上面列出的核心模块。之所以包括在 CMake 项目中,是为了方便访问 ESP-IDF 构建系统功能。
  • project.cmake - 导入 idf.cmake,并提供了一个自定义的 project() 命令,该命令负责处理建立可执行文件时所有的繁重工作。包含在标准 ESP-IDF 项目的顶层 CMakeLists.txt 中。

/tools/cmake 中的其它文件都是构建过程中的支持性文件或第三方脚本。

构建过程

本节介绍了标准的 ESP-IDF 应用构建过程。构建过程可以大致分为四个阶段:

ESP-IDF Build System Process

初始化

该阶段为构建设置必要的参数。

  • 在将 idf.cmake 导入 project.cmake 后,将执行以下步骤:
    • 在环境变量中设置 IDF_PATH 或从顶层 CMakeLists.txt 中包含的 project.cmake 路径推断相对路径。
    • /tools/cmake 添加到 CMAKE_MODULE_PATH 中,并导入核心模块和各种辅助/第三方脚本。
    • 设置构建工具/可执行文件,如默认的 Python 解释器。
    • 获取 ESP-IDF git 修订版,并存储为 IDF_VER
    • 设置全局构建参数,即编译选项、编译定义、包括所有组件的 include 目录。
    • components 中的组件添加到构建中。
  • 自定义 project() 命令的初始部分执行以下步骤:
    • 在环境变量或 CMake 缓存中设置 IDF_TARGET 以及设置相应要使用的 CMAKE_TOOLCHAIN_FILE
    • 添加 EXTRA_COMPONENT_DIRS 中的组件至构建中
    • COMPONENTS/ EXCLUDE_COMPONENTSSDKCONFIGSDKCONFIG_DEFAULTS 等变量中为调用命令 idf_build_process() 准备参数。

调用 idf_build_process() 命令标志着这个阶段的结束。

枚举

这个阶段会建立一个需要在构建过程中处理的组件列表,该阶段在 idf_build_process() 的前半部分进行。

  • 检索每个组件的公共和私有依赖。创建一个子进程,以脚本模式执行每个组件的 CMakeLists.txt。idf_component_register REQUIRES 和 PRIV_REQUIRES 参数的值会返回给父进程。这就是所谓的早期扩展。在这一步中定义变量 CMAKE_BUILD_EARLY_EXPANSION
  • 根据公共和私有的依赖关系,递归地导入各个组件。
  • 若未禁用 IDF 组件管理器,则可调用它来解析组件的依赖项: - 查找项目中包含的清单和依赖项。 - 启动版本解决过程以解析组件的依赖项。 - 若版本解决过程成功,则 IDF 组件管理器会下载依赖项,并将它们集成到构建中,随后创建 dependencies.lock 文件,该文件中包含上述依赖项的确切版本列表。

处理

该阶段处理构建中的组件,是 idf_build_process() 的后半部分。

完成

该阶段是 idf_build_process() 剩余的步骤。

请参考 /tools/cmake/project.cmake 获取更多信息。

从 ESP-IDF GNU Make 构建系统迁移到 CMake 构建系统

ESP-IDF CMake 构建系统与旧版的 GNU Make 构建系统在某些方面非常相似,开发者都需要提供 include 目录、源文件等。然而,有一个语法上的区别,即对于 ESP-IDF CMake 构建系统,开发者需要将这些作为参数传递给注册命令 idf_component_register

自动转换工具

在 ESP-IDF v4.x 版本中,tools/cmake/convert_to_cmake.py 提供了项目自动转换工具。由于该脚本依赖于 make 构建系统,所以 v5.0 版本中不包含该脚本。

CMake 中不可用的功能

有些功能已从 CMake 构建系统中移除,或者已经发生很大改变。GNU Make 构建系统中的以下变量已从 CMake 构建系统中删除:

无默认值的变量

以下变量不再具有默认值:

不再需要的变量

在 CMake 构建系统中,如果设置了 COMPONENT_SRCS,就不需要再设置 COMPONENT_SRCDIRS。实际上,CMake 构建系统中如果设置了 COMPONENT_SRCDIRS,那么 COMPONENT_SRCS 就会被忽略。

从 Make 中烧录

仍然可以使用 make flash 或者类似的目标来构建和烧录,但是项目 sdkconfig 不能再用来指定串口和波特率。可以使用环境变量来覆盖串口和波特率的设置,详情请参阅 使用 Ninja/Make 来烧录

应用示例