jax.numpy.linalg.cross — JAX documentation (original) (raw)
jax.numpy.linalg.cross#
jax.numpy.linalg.cross(x1, x2, /, *, axis=-1)[source]#
Compute the cross-product of two 3D vectors
JAX implementation of numpy.linalg.cross()
Parameters:
- x1 (ArrayLike) – N-dimensional array, with
x1.shape[axis] == 3 - x2 (ArrayLike) – N-dimensional array, with
x2.shape[axis] == 3, and other axes broadcast-compatible withx1. - axis – axis along which to take the cross product (default: -1).
Returns:
array containing the result of the cross-product
Examples
Showing that \(\hat{x} \times \hat{y} = \hat{z}\):
x = jnp.array([1., 0., 0.]) y = jnp.array([0., 1., 0.]) jnp.linalg.cross(x, y) Array([0., 0., 1.], dtype=float32)
Cross product of \(\hat{x}\) with all three standard unit vectors, via broadcasting:
xyz = jnp.eye(3) jnp.linalg.cross(x, xyz, axis=-1) Array([[ 0., 0., 0.], [ 0., 0., 1.], [ 0., -1., 0.]], dtype=float32)