jax.numpy.linalg.vecdot — JAX documentation (original) (raw)
jax.numpy.linalg.vecdot#
jax.numpy.linalg.vecdot(x1, x2, /, *, axis=-1, precision=None, preferred_element_type=None)[source]#
Compute the (batched) vector conjugate dot product of two arrays.
JAX implementation of numpy.linalg.vecdot().
Parameters:
- x1 (ArrayLike) – left-hand side array.
- x2 (ArrayLike) – right-hand side array. Size of
x2[axis]must match size ofx1[axis], and remaining dimensions must be broadcast-compatible. - axis (int) – axis along which to compute the dot product (default: -1)
- precision (lax.PrecisionLike) – either
None(default), which means the default precision for the backend, a Precision enum value (Precision.DEFAULT,Precision.HIGHorPrecision.HIGHEST) or a tuple of two such values indicating precision ofx1andx2. - preferred_element_type (DTypeLike | None) – either
None(default), which means the default accumulation type for the input types, or a datatype, indicating to accumulate results to and return a result with that datatype.
Returns:
array containing the conjugate dot product of x1 and x2 along axis. The non-contracted dimensions are broadcast together.
Return type:
See also
- jax.numpy.vecdot(): similar API in the
jax.numpynamespace. - jax.numpy.linalg.matmul(): matrix multiplication.
- jax.numpy.linalg.tensordot(): general tensor dot product.
Examples
Vector dot product of two 1D arrays:
x1 = jnp.array([1, 2, 3]) x2 = jnp.array([4, 5, 6]) jnp.linalg.vecdot(x1, x2) Array(32, dtype=int32)
Batched vector dot product of two 2D arrays:
x1 = jnp.array([[1, 2, 3], ... [4, 5, 6]]) x2 = jnp.array([[2, 3, 4]]) jnp.linalg.vecdot(x1, x2, axis=-1) Array([20, 47], dtype=int32)