jax.numpy.percentile — JAX documentation (original) (raw)
jax.numpy.percentile#
jax.numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, interpolation=Deprecated)[source]#
Compute the percentile of the data along the specified axis.
JAX implementation of numpy.percentile().
Parameters:
- a (ArrayLike) – N-dimensional array input.
- q (ArrayLike) – scalar or 1-dimensional array specifying the desired quantiles.
qshould contain integer or floating point values between0and100. - axis (int | tuple[_int,_ ... ] | None) – optional axis or tuple of axes along which to compute the quantile
- out (None) – not implemented by JAX; will error if not None
- overwrite_input (bool) – not implemented by JAX; will error if not False
- method (str) – specify the interpolation method to use. Options are one of
["linear", "lower", "higher", "midpoint", "nearest"]. default islinear. - keepdims (bool) – if True, then the returned array will have the same number of dimensions as the input. Default is False.
- interpolation (DeprecatedArg)
Returns:
An array containing the specified percentiles along the specified axes.
Return type:
See also
- jax.numpy.quantile(): compute the quantile (0.0-1.0)
- jax.numpy.nanpercentile(): compute the percentile while ignoring NaNs
Examples
Computing the median and quartiles of a 1D array:
x = jnp.array([0, 1, 2, 3, 4, 5, 6]) q = jnp.array([25, 50, 75]) jnp.percentile(x, q) Array([1.5, 3. , 4.5], dtype=float32)
Computing the same percentiles with nearest rather than linear interpolation:
jnp.percentile(x, q, method='nearest') Array([1., 3., 4.], dtype=float32)