jax.numpy.ufunc — JAX documentation (original) (raw)

jax.numpy.ufunc#

class jax.numpy.ufunc(func, /, nin, nout, *, name=None, nargs=None, identity=None, call=None, reduce=None, accumulate=None, at=None, reduceat=None)#

Universal functions which operation element-by-element on arrays.

JAX implementation of numpy.ufunc.

This is a class for JAX-backed implementations of NumPy’s ufunc APIs. Most users will never need to instantiate ufunc, but rather will use the pre-defined ufuncs in jax.numpy.

For constructing your own ufuncs, see jax.numpy.frompyfunc().

Examples

Universal functions are functions that apply element-wise to broadcasted arrays, but they also come with a number of extra attributes and methods.

As an example, consider the function jax.numpy.add. The object acts as a function that applies addition to broadcasted arrays in an element-wise manner:

x = jnp.array([1, 2, 3, 4, 5]) jnp.add(x, 1) Array([2, 3, 4, 5, 6], dtype=int32)

Each ufunc object includes a number of attributes that describe its behavior:

jnp.add.nin # number of inputs 2 jnp.add.nout # number of outputs 1 jnp.add.identity # identity value, or None if no identity exists 0

Binary ufuncs like jax.numpy.add include number of methods to apply the function to arrays in different manners.

The outer() method applies the function to the pair-wise outer-product of the input array values:

jnp.add.outer(x, x) Array([[ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10]], dtype=int32)

The ufunc.reduce() method performs a reduction over the array. For example, jnp.add.reduce() is equivalent to jnp.sum:

jnp.add.reduce(x) Array(15, dtype=int32)

The ufunc.accumulate() method performs a cumulative reduction over the array. For example, jnp.add.accumulate() is equivalent to jax.numpy.cumulative_sum():

jnp.add.accumulate(x) Array([ 1, 3, 6, 10, 15], dtype=int32)

The ufunc.at() method applies the function at particular indices in the array; for jnp.add the computation is similar to jax.lax.scatter_add():

jnp.add.at(x, 0, 100, inplace=False) Array([101, 2, 3, 4, 5], dtype=int32)

And the ufunc.reduceat() method performs a number of reduceoperations between specified indices of an array; for jnp.add the operation is similar to jax.ops.segment_sum():

jnp.add.reduceat(x, jnp.array([0, 2])) Array([ 3, 12], dtype=int32)

In this case, the first element is x[0:2].sum(), and the second element is x[2:].sum().

Parameters:

__init__(func, /, nin, nout, *, name=None, nargs=None, identity=None, call=None, reduce=None, accumulate=None, at=None, reduceat=None)[source]#

Parameters:

Methods

__init__(func, /, nin, nout, *[, name, ...])
accumulate(a[, axis, dtype, out]) Accumulate operation derived from binary ufunc.
at(a, indices[, b, inplace]) Update elements of an array via the specified unary or binary ufunc.
outer(A, B, /) Apply the function to all pairs of values in A and B.
reduce(a[, axis, dtype, out, keepdims, ...]) Reduction operation derived from a binary function.
reduceat(a, indices[, axis, dtype, out]) Reduce an array between specified indices via a binary ufunc.

Attributes