jax.numpy.unpackbits — JAX documentation (original) (raw)
jax.numpy.unpackbits#
jax.numpy.unpackbits(a, axis=None, count=None, bitorder='big')[source]#
Unpack the bits in a uint8 array.
JAX implementation of numpy.unpackbits().
Parameters:
- a (ArrayLike) – N-dimensional array of type
uint8
. - axis (int | None) – optional axis along which to unpack. If not specified,
a
will be flattened - count (int | None) – specify the number of bits to unpack (if positive) or the number of bits to trim from the end (if negative).
- bitorder (str) –
"big"
(default) or"little"
: specify whether the bit order is big-endian or little-endian.
Returns:
a uint8 array of unpacked bits.
Return type:
Examples
Unpacking bits from a scalar:
jnp.unpackbits(jnp.uint8(27)) # big-endian by default Array([0, 0, 0, 1, 1, 0, 1, 1], dtype=uint8) jnp.unpackbits(jnp.uint8(27), bitorder="little") Array([1, 1, 0, 1, 1, 0, 0, 0], dtype=uint8)
Compare this to the Python binary representation:
Unpacking bits along an axis:
vals = jnp.array([[154], ... [ 49]], dtype='uint8') bits = jnp.unpackbits(vals, axis=1) bits Array([[1, 0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1]], dtype=uint8)
Using packbits() to invert this:
jnp.packbits(bits, axis=1) Array([[154], [ 49]], dtype=uint8)
The count
keyword lets unpackbits
serve as an inverse of packbits
in cases where not all bits are present:
bits = jnp.array([1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1]) # 11 bits vals = jnp.packbits(bits) vals Array([219, 96], dtype=uint8) jnp.unpackbits(vals) # 16 zero-padded bits Array([1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0], dtype=uint8) jnp.unpackbits(vals, count=11) # specify 11 output bits Array([1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1], dtype=uint8) jnp.unpackbits(vals, count=-5) # specify 5 bits to be trimmed Array([1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1], dtype=uint8)