pymc.Beta — PyMC dev documentation (original) (raw)
class pymc.Beta(name, *args, rng=None, dims=None, initval=None, observed=None, total_size=None, transform=UNSET, default_transform=UNSET, **kwargs)[source]#
Beta distribution.
The pdf of this distribution is
\[f(x \mid \alpha, \beta) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}\]
where \(B\) is the Beta function.
For more information, see https://en.wikipedia.org/wiki/Beta_distribution.
(Source code, png, hires.png, pdf)
Beta distribution can be parameterized either in terms of alpha and beta, mean and standard deviation or mean and sample size. The link between the three parametrizations is given by
\[ \begin{align}\begin{aligned}\begin{split}\alpha &= \mu \kappa \\ \beta &= (1 - \mu) \kappa\end{split}\\\text{where } \kappa = \frac{\mu(1-\mu)}{\sigma^2} - 1\\\begin{split}\alpha &= \mu * \nu \\ \beta &= (1 - \mu) * \nu\end{split}\end{aligned}\end{align} \]
Parameters:
alphatensor_like of float, optional
alpha
> 0. If not specified, then calculated using mu
and sigma
.
betatensor_like of float, optional
beta
> 0. If not specified, then calculated using mu
and sigma
.
mutensor_like of float, optional
Alternative mean (0 < mu
< 1).
sigmatensor_like of float, optional
Alternative standard deviation (0 < sigma
< sqrt(mu
* (1 - mu
))).
nutensor_like of float, optional
Alternative “sample size” of a Beta distribution (nu
> 0).
Notes
Beta distribution is a conjugate prior for the parameter \(p\) of the binomial distribution.
Methods