dataclasses — Data Classes — Python 3.8.20 documentation (original) (raw)
Source code: Lib/dataclasses.py
This module provides a decorator and functions for automatically adding generated special methods such as __init__() and__repr__() to user-defined classes. It was originally described in PEP 557.
The member variables to use in these generated methods are defined using PEP 526 type annotations. For example this code:
from dataclasses import dataclass
@dataclass class InventoryItem: """Class for keeping track of an item in inventory.""" name: str unit_price: float quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
Will add, among other things, a __init__() that looks like:
def init(self, name: str, unit_price: float, quantity_on_hand: int = 0): self.name = name self.unit_price = unit_price self.quantity_on_hand = quantity_on_hand
Note that this method is automatically added to the class: it is not directly specified in the InventoryItem
definition shown above.
New in version 3.7.
Module-level decorators, classes, and functions¶
@
dataclasses.
dataclass
(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False)¶
This function is a decorator that is used to add generatedspecial methods to classes, as described below.
The dataclass() decorator examines the class to findfield
s. A field
is defined as class variable that has atype annotation. With two exceptions described below, nothing in dataclass()examines the type specified in the variable annotation.
The order of the fields in all of the generated methods is the order in which they appear in the class definition.
The dataclass() decorator will add various “dunder” methods to the class, described below. If any of the added methods already exist on the class, the behavior depends on the parameter, as documented below. The decorator returns the same class that is called on; no new class is created.
If dataclass() is used just as a simple decorator with no parameters, it acts as if it has the default values documented in this signature. That is, these three uses of dataclass() are equivalent:
@dataclass class C: ...
@dataclass() class C: ...
@dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False) class C: ...
The parameters to dataclass() are:
init
: If true (the default), a __init__() method will be generated.
If the class already defines __init__(), this parameter is ignored.repr
: If true (the default), a __repr__() method will be generated. The generated repr string will have the class name and the name and repr of each field, in the order they are defined in the class. Fields that are marked as being excluded from the repr are not included. For example:InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10)
.
If the class already defines __repr__(), this parameter is ignored.eq
: If true (the default), an __eq__() method will be generated. This method compares the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type.
If the class already defines __eq__(), this parameter is ignored.order
: If true (the default isFalse
), __lt__(),__le__(), __gt__(), and __ge__() methods will be generated. These compare the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type. Iforder
is true andeq
is false, aValueError is raised.
If the class already defines any of __lt__(),__le__(), __gt__(), or __ge__(), thenTypeError is raised.unsafe_hash
: IfFalse
(the default), a __hash__() method is generated according to howeq
andfrozen
are set.
__hash__() is used by built-in hash(), and when objects are added to hashed collections such as dictionaries and sets. Having a__hash__() implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer’s intent, the existence and behavior of __eq__(), and the values of theeq
andfrozen
flags in the dataclass() decorator.
By default, dataclass() will not implicitly add a __hash__()method unless it is safe to do so. Neither will it add or change an existing explicitly defined __hash__() method. Setting the class attribute__hash__ = None
has a specific meaning to Python, as described in the __hash__() documentation.
If __hash__() is not explicitly defined, or if it is set toNone
, then dataclass() may add an implicit __hash__() method. Although not recommended, you can force dataclass() to create a__hash__() method withunsafe_hash=True
. This might be the case if your class is logically immutable but can nonetheless be mutated. This is a specialized use case and should be considered carefully.
Here are the rules governing implicit creation of a __hash__()method. Note that you cannot both have an explicit __hash__()method in your dataclass and setunsafe_hash=True
; this will result in a TypeError.
Ifeq
andfrozen
are both true, by default dataclass() will generate a __hash__() method for you. Ifeq
is true andfrozen
is false, __hash__() will be set toNone
, marking it unhashable (which it is, since it is mutable). Ifeq
is false,__hash__() will be left untouched meaning the __hash__()method of the superclass will be used (if the superclass isobject, this means it will fall back to id-based hashing).frozen
: If true (the default isFalse
), assigning to fields will generate an exception. This emulates read-only frozen instances. If__setattr__() or __delattr__() is defined in the class, thenTypeError is raised. See the discussion below.
field
s may optionally specify a default value, using normal Python syntax:
@dataclass class C: a: int # 'a' has no default value b: int = 0 # assign a default value for 'b'
In this example, both a
and b
will be included in the added__init__() method, which will be defined as:
def init(self, a: int, b: int = 0):
TypeError will be raised if a field without a default value follows a field with a default value. This is true either when this occurs in a single class, or as a result of class inheritance.
dataclasses.
field
(*, default=MISSING, default_factory=MISSING, repr=True, hash=None, init=True, compare=True, metadata=None)¶
For common and simple use cases, no other functionality is required. There are, however, some dataclass features that require additional per-field information. To satisfy this need for additional information, you can replace the default field value with a call to the provided field() function. For example:
@dataclass class C: mylist: List[int] = field(default_factory=list)
c = C() c.mylist += [1, 2, 3]
As shown above, the MISSING
value is a sentinel object used to detect if the default
and default_factory
parameters are provided. This sentinel is used because None
is a valid value for default
. No code should directly use the MISSING
value.
The parameters to field() are:
default
: If provided, this will be the default value for this field. This is needed because the field() call itself replaces the normal position of the default value.default_factory
: If provided, it must be a zero-argument callable that will be called when a default value is needed for this field. Among other purposes, this can be used to specify fields with mutable default values, as discussed below. It is an error to specify bothdefault
anddefault_factory
.init
: If true (the default), this field is included as a parameter to the generated __init__() method.repr
: If true (the default), this field is included in the string returned by the generated __repr__() method.compare
: If true (the default), this field is included in the generated equality and comparison methods (__eq__(),__gt__(), et al.).hash
: This can be a bool orNone
. If true, this field is included in the generated __hash__() method. IfNone
(the default), use the value ofcompare
: this would normally be the expected behavior. A field should be considered in the hash if it’s used for comparisons. Setting this value to anything other thanNone
is discouraged.
One possible reason to sethash=False
butcompare=True
would be if a field is expensive to compute a hash value for, that field is needed for equality testing, and there are other fields that contribute to the type’s hash value. Even if a field is excluded from the hash, it will still be used for comparisons.metadata
: This can be a mapping or None. None is treated as an empty dict. This value is wrapped inMappingProxyType() to make it read-only, and exposed on the Field object. It is not used at all by Data Classes, and is provided as a third-party extension mechanism. Multiple third-parties can each have their own key, to use as a namespace in the metadata.
If the default value of a field is specified by a call tofield(), then the class attribute for this field will be replaced by the specified default
value. If no default
is provided, then the class attribute will be deleted. The intent is that after the dataclass() decorator runs, the class attributes will all contain the default values for the fields, just as if the default value itself were specified. For example, after:
@dataclass class C: x: int y: int = field(repr=False) z: int = field(repr=False, default=10) t: int = 20
The class attribute C.z
will be 10
, the class attributeC.t
will be 20
, and the class attributes C.x
andC.y
will not be set.
class dataclasses.
Field
¶
Field objects describe each defined field. These objects are created internally, and are returned by the fields()module-level method (see below). Users should never instantiate aField object directly. Its documented attributes are:
name
: The name of the field.type
: The type of the field.default
,default_factory
,init
,repr
,hash
,compare
, andmetadata
have the identical meaning and values as they do in the field() declaration.
Other attributes may exist, but they are private and must not be inspected or relied on.
dataclasses.
fields
(class_or_instance)¶
Returns a tuple of Field objects that define the fields for this dataclass. Accepts either a dataclass, or an instance of a dataclass. Raises TypeError if not passed a dataclass or instance of one. Does not return pseudo-fields which are ClassVar
or InitVar
.
dataclasses.
asdict
(instance, *, dict_factory=dict)¶
Converts the dataclass instance
to a dict (by using the factory function dict_factory
). Each dataclass is converted to a dict of its fields, as name: value
pairs. dataclasses, dicts, lists, and tuples are recursed into. For example:
@dataclass class Point: x: int y: int
@dataclass class C: mylist: List[Point]
p = Point(10, 20) assert asdict(p) == {'x': 10, 'y': 20}
c = C([Point(0, 0), Point(10, 4)]) assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
Raises TypeError if instance
is not a dataclass instance.
dataclasses.
astuple
(instance, *, tuple_factory=tuple)¶
Converts the dataclass instance
to a tuple (by using the factory function tuple_factory
). Each dataclass is converted to a tuple of its field values. dataclasses, dicts, lists, and tuples are recursed into.
Continuing from the previous example:
assert astuple(p) == (10, 20) assert astuple(c) == ([(0, 0), (10, 4)],)
Raises TypeError if instance
is not a dataclass instance.
dataclasses.
make_dataclass
(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False)¶
Creates a new dataclass with name cls_name
, fields as defined in fields
, base classes as given in bases
, and initialized with a namespace as given in namespace
. fields
is an iterable whose elements are each either name
, (name, type)
, or (name, type, Field)
. If just name
is supplied,typing.Any
is used for type
. The values of init
,repr
, eq
, order
, unsafe_hash
, and frozen
have the same meaning as they do in dataclass().
This function is not strictly required, because any Python mechanism for creating a new class with __annotations__
can then apply the dataclass() function to convert that class to a dataclass. This function is provided as a convenience. For example:
C = make_dataclass('C', [('x', int), 'y', ('z', int, field(default=5))], namespace={'add_one': lambda self: self.x + 1})
Is equivalent to:
@dataclass class C: x: int y: 'typing.Any' z: int = 5
def add_one(self):
return self.x + 1
dataclasses.
replace
(instance, **changes)¶
Creates a new object of the same type of instance
, replacing fields with values from changes
. If instance
is not a Data Class, raises TypeError. If values in changes
do not specify fields, raises TypeError.
The newly returned object is created by calling the __init__()method of the dataclass. This ensures that__post_init__()
, if present, is also called.
Init-only variables without default values, if any exist, must be specified on the call to replace() so that they can be passed to__init__() and __post_init__()
.
It is an error for changes
to contain any fields that are defined as having init=False
. A ValueError will be raised in this case.
Be forewarned about how init=False
fields work during a call toreplace(). They are not copied from the source object, but rather are initialized in __post_init__()
, if they’re initialized at all. It is expected that init=False
fields will be rarely and judiciously used. If they are used, it might be wise to have alternate class constructors, or perhaps a customreplace()
(or similarly named) method which handles instance copying.
dataclasses.
is_dataclass
(class_or_instance)¶
Return True
if its parameter is a dataclass or an instance of one, otherwise return False
.
If you need to know if a class is an instance of a dataclass (and not a dataclass itself), then add a further check for not isinstance(obj, type)
:
def is_dataclass_instance(obj): return is_dataclass(obj) and not isinstance(obj, type)
Post-init processing¶
The generated __init__() code will call a method named__post_init__()
, if __post_init__()
is defined on the class. It will normally be called as self.__post_init__()
. However, if any InitVar
fields are defined, they will also be passed to __post_init__()
in the order they were defined in the class. If no __init__() method is generated, then__post_init__()
will not automatically be called.
Among other uses, this allows for initializing field values that depend on one or more other fields. For example:
@dataclass class C: a: float b: float c: float = field(init=False)
def __post_init__(self):
self.c = self.a + self.b
See the section below on init-only variables for ways to pass parameters to __post_init__()
. Also see the warning about howreplace() handles init=False
fields.
Class variables¶
One of two places where dataclass() actually inspects the type of a field is to determine if a field is a class variable as defined in PEP 526. It does this by checking if the type of the field istyping.ClassVar
. If a field is a ClassVar
, it is excluded from consideration as a field and is ignored by the dataclass mechanisms. Such ClassVar
pseudo-fields are not returned by the module-level fields() function.
Init-only variables¶
The other place where dataclass() inspects a type annotation is to determine if a field is an init-only variable. It does this by seeing if the type of a field is of type dataclasses.InitVar
. If a field is an InitVar
, it is considered a pseudo-field called an init-only field. As it is not a true field, it is not returned by the module-level fields() function. Init-only fields are added as parameters to the generated __init__() method, and are passed to the optional __post_init__()
method. They are not otherwise used by dataclasses.
For example, suppose a field will be initialized from a database, if a value is not provided when creating the class:
@dataclass class C: i: int j: int = None database: InitVar[DatabaseType] = None
def __post_init__(self, database):
if self.j is None and database is not None:
self.j = database.lookup('j')
c = C(10, database=my_database)
In this case, fields() will return Field objects for i
andj
, but not for database
.
Frozen instances¶
It is not possible to create truly immutable Python objects. However, by passing frozen=True
to the dataclass() decorator you can emulate immutability. In that case, dataclasses will add__setattr__() and __delattr__() methods to the class. These methods will raise a FrozenInstanceError when invoked.
There is a tiny performance penalty when using frozen=True
:__init__() cannot use simple assignment to initialize fields, and must use object.__setattr__().
Inheritance¶
When the dataclass is being created by the dataclass() decorator, it looks through all of the class’s base classes in reverse MRO (that is, starting at object) and, for each dataclass that it finds, adds the fields from that base class to an ordered mapping of fields. After all of the base class fields are added, it adds its own fields to the ordered mapping. All of the generated methods will use this combined, calculated ordered mapping of fields. Because the fields are in insertion order, derived classes override base classes. An example:
@dataclass class Base: x: Any = 15.0 y: int = 0
@dataclass class C(Base): z: int = 10 x: int = 15
The final list of fields is, in order, x
, y
, z
. The final type of x
is int
, as specified in class C
.
The generated __init__() method for C
will look like:
def init(self, x: int = 15, y: int = 0, z: int = 10):
Default factory functions¶
If a field() specifies a
default_factory
, it is called with zero arguments when a default value for the field is needed. For example, to create a new instance of a list, use:mylist: list = field(default_factory=list)
If a field is excluded from __init__() (using
init=False
) and the field also specifiesdefault_factory
, then the default factory function will always be called from the generated__init__() function. This happens because there is no other way to give the field an initial value.
Mutable default values¶
Python stores default member variable values in class attributes. Consider this example, not using dataclasses:
class C: x = [] def add(self, element): self.x.append(element)
o1 = C() o2 = C() o1.add(1) o2.add(2) assert o1.x == [1, 2] assert o1.x is o2.x
Note that the two instances of class
C
share the same class variablex
, as expected.Using dataclasses, if this code was valid:
@dataclass class D: x: List = [] def add(self, element): self.x += element
it would generate code similar to:
class D: x = [] def init(self, x=x): self.x = x def add(self, element): self.x += element
assert D().x is D().x
This has the same issue as the original example using class
C
. That is, two instances of classD
that do not specify a value forx
when creating a class instance will share the same copy ofx
. Because dataclasses just use normal Python class creation they also share this behavior. There is no general way for Data Classes to detect this condition. Instead, dataclasses will raise aTypeError if it detects a default parameter of typelist
,dict
, orset
. This is a partial solution, but it does protect against many common errors.Using default factory functions is a way to create new instances of mutable types as default values for fields:
@dataclass class D: x: list = field(default_factory=list)
assert D().x is not D().x
Exceptions¶
exception dataclasses.
FrozenInstanceError
¶
Raised when an implicitly defined __setattr__() or__delattr__() is called on a dataclass which was defined withfrozen=True
. It is a subclass of AttributeError.