torch.backends.cudnn — PyTorch 2.7 documentation (original) (raw)
Source code for torch.backends.cudnn
mypy: allow-untyped-defs
import os import sys import warnings from contextlib import contextmanager from typing import Optional
import torch from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
try: from torch._C import _cudnn except ImportError: _cudnn = None # type: ignore[assignment]
Write:
torch.backends.cudnn.enabled = False
to globally disable CuDNN/MIOpen
__cudnn_version: Optional[int] = None
if _cudnn is not None:
def _init():
global __cudnn_version
if __cudnn_version is None:
__cudnn_version = _cudnn.getVersionInt()
runtime_version = _cudnn.getRuntimeVersion()
compile_version = _cudnn.getCompileVersion()
runtime_major, runtime_minor, _ = runtime_version
compile_major, compile_minor, _ = compile_version
# Different major versions are always incompatible
# Starting with cuDNN 7, minor versions are backwards-compatible
# Not sure about MIOpen (ROCm), so always do a strict check
if runtime_major != compile_major:
cudnn_compatible = False
elif runtime_major < 7 or not _cudnn.is_cuda:
cudnn_compatible = runtime_minor == compile_minor
else:
cudnn_compatible = runtime_minor >= compile_minor
if not cudnn_compatible:
if os.environ.get("PYTORCH_SKIP_CUDNN_COMPATIBILITY_CHECK", "0") == "1":
return True
base_error_msg = (
f"cuDNN version incompatibility: "
f"PyTorch was compiled against {compile_version} "
f"but found runtime version {runtime_version}. "
f"PyTorch already comes bundled with cuDNN. "
f"One option to resolving this error is to ensure PyTorch "
f"can find the bundled cuDNN. "
)
if "LD_LIBRARY_PATH" in os.environ:
ld_library_path = os.environ.get("LD_LIBRARY_PATH", "")
if any(
substring in ld_library_path for substring in ["cuda", "cudnn"]
):
raise RuntimeError(
f"{base_error_msg}"
f"Looks like your LD_LIBRARY_PATH contains incompatible version of cudnn. "
f"Please either remove it from the path or install cudnn {compile_version}"
)
else:
raise RuntimeError(
f"{base_error_msg}"
f"one possibility is that there is a "
f"conflicting cuDNN in LD_LIBRARY_PATH."
)
else:
raise RuntimeError(base_error_msg)
return True
else:
def _init():
return False
[docs]def version(): """Return the version of cuDNN.""" if not _init(): return None return __cudnn_version
CUDNN_TENSOR_DTYPES = { torch.half, torch.float, torch.double, }
[docs]def is_available(): r"""Return a bool indicating if CUDNN is currently available.""" return torch._C._has_cudnn
def is_acceptable(tensor): if not torch._C._get_cudnn_enabled(): return False if tensor.device.type != "cuda" or tensor.dtype not in CUDNN_TENSOR_DTYPES: return False if not is_available(): warnings.warn( "PyTorch was compiled without cuDNN/MIOpen support. To use cuDNN/MIOpen, rebuild " "PyTorch making sure the library is visible to the build system." ) return False if not _init(): warnings.warn( "cuDNN/MIOpen library not found. Check your {libpath}".format( libpath={"darwin": "DYLD_LIBRARY_PATH", "win32": "PATH"}.get( sys.platform, "LD_LIBRARY_PATH" ) ) ) return False return True
def set_flags( _enabled=None, _benchmark=None, _benchmark_limit=None, _deterministic=None, _allow_tf32=None, ): orig_flags = ( torch._C._get_cudnn_enabled(), torch._C._get_cudnn_benchmark(), None if not is_available() else torch._C._cuda_get_cudnn_benchmark_limit(), torch._C._get_cudnn_deterministic(), torch._C._get_cudnn_allow_tf32(), ) if _enabled is not None: torch._C._set_cudnn_enabled(_enabled) if _benchmark is not None: torch._C._set_cudnn_benchmark(_benchmark) if _benchmark_limit is not None and is_available(): torch._C._cuda_set_cudnn_benchmark_limit(_benchmark_limit) if _deterministic is not None: torch._C._set_cudnn_deterministic(_deterministic) if _allow_tf32 is not None: torch._C._set_cudnn_allow_tf32(_allow_tf32) return orig_flags
@contextmanager def flags( enabled=False, benchmark=False, benchmark_limit=10, deterministic=False, allow_tf32=True, ): with __allow_nonbracketed_mutation(): orig_flags = set_flags( enabled, benchmark, benchmark_limit, deterministic, allow_tf32 ) try: yield finally: # recover the previous values with __allow_nonbracketed_mutation(): set_flags(*orig_flags)
The magic here is to allow us to intercept code like this:
torch.backends.<cudnn|mkldnn>.enabled = True
class CudnnModule(PropModule): def init(self, m, name): super().init(m, name)
enabled = ContextProp(torch._C._get_cudnn_enabled, torch._C._set_cudnn_enabled)
deterministic = ContextProp(
torch._C._get_cudnn_deterministic, torch._C._set_cudnn_deterministic
)
benchmark = ContextProp(
torch._C._get_cudnn_benchmark, torch._C._set_cudnn_benchmark
)
benchmark_limit = None
if is_available():
benchmark_limit = ContextProp(
torch._C._cuda_get_cudnn_benchmark_limit,
torch._C._cuda_set_cudnn_benchmark_limit,
)
allow_tf32 = ContextProp(
torch._C._get_cudnn_allow_tf32, torch._C._set_cudnn_allow_tf32
)
This is the sys.modules replacement trick, see
https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
sys.modules[name] = CudnnModule(sys.modules[name], name)
Add type annotation for the replaced module
enabled: bool deterministic: bool benchmark: bool allow_tf32: bool benchmark_limit: int