>> from torch.distributed import rpc >>> >>> # omitting setup and shutdown RPC >>> >>> # On all workers >>> @rpc.functions.async_execution >>> def async_add_chained(to, x, y, z): >>> # This function runs on "worker1" and returns immediately when >>> # the callback is installed through the `then(cb)` API. In the >>> # mean time, the `rpc_async` to "worker2" can run concurrently. >>> # When the return value of that `rpc_async` arrives at >>> # "worker1", "worker1" will run the lambda function accordingly >>> # and set the value for the previously returned `Future`, which >>> # will then trigger RPC to send the result back to "worker0". >>> return rpc.rpc_async(to, torch.add, args=(x, y)).then( >>> lambda fut: fut.wait() + z >>> ) >>> >>> # On worker0 >>> # xdoctest: +SKIP >>> ret = rpc.rpc_sync( >>> "worker1", >>> async_add_chained, >>> args=("worker2", torch.ones(2), 1, 1) >>> ) >>> print(ret) # prints tensor([3., 3.]) When combined with TorchScript decorators, this decorator must be the outmost one. >>> from torch import Tensor >>> from torch.futures import Future >>> from torch.distributed import rpc >>> >>> # omitting setup and shutdown RPC >>> >>> # On all workers >>> @torch.jit.script >>> def script_add(x: Tensor, y: Tensor) -> Tensor: >>> return x + y >>> >>> @rpc.functions.async_execution >>> @torch.jit.script >>> def async_add(to: str, x: Tensor, y: Tensor) -> Future[Tensor]: >>> return rpc.rpc_async(to, script_add, (x, y)) >>> >>> # On worker0 >>> ret = rpc.rpc_sync( >>> "worker1", >>> async_add, >>> args=("worker2", torch.ones(2), 1) >>> ) >>> print(ret) # prints tensor([2., 2.]) When combined with static or class method, this decorator must be the inner one. >>> from torch.distributed import rpc >>> >>> # omitting setup and shutdown RPC >>> >>> # On all workers >>> class AsyncExecutionClass: >>> >>> @staticmethod >>> @rpc.functions.async_execution >>> def static_async_add(to, x, y, z): >>> return rpc.rpc_async(to, torch.add, args=(x, y)).then( >>> lambda fut: fut.wait() + z >>> ) >>> >>> @classmethod >>> @rpc.functions.async_execution >>> def class_async_add(cls, to, x, y, z): >>> ret_fut = torch.futures.Future() >>> rpc.rpc_async(to, torch.add, args=(x, y)).then( >>> lambda fut: ret_fut.set_result(fut.wait() + z) >>> ) >>> return ret_fut >>> >>> @rpc.functions.async_execution >>> def bound_async_add(self, to, x, y, z): >>> return rpc.rpc_async(to, torch.add, args=(x, y)).then( >>> lambda fut: fut.wait() + z >>> ) >>> >>> # On worker0 >>> ret = rpc.rpc_sync( >>> "worker1", >>> AsyncExecutionClass.static_async_add, >>> args=("worker2", torch.ones(2), 1, 2) >>> ) >>> print(ret) # prints tensor([4., 4.]) >>> >>> ret = rpc.rpc_sync( >>> "worker1", >>> AsyncExecutionClass.class_async_add, >>> args=("worker2", torch.ones(2), 1, 2) >>> ) >>> print(ret) # prints tensor([4., 4.]) This decorator also works with RRef helpers, i.e., . :meth:`torch.distributed.rpc.RRef.rpc_sync`, :meth:`torch.distributed.rpc.RRef.rpc_async`, and :meth:`torch.distributed.rpc.RRef.remote`. >>> from torch.distributed import rpc >>> >>> # reuse the AsyncExecutionClass class above >>> rref = rpc.remote("worker1", AsyncExecutionClass) >>> ret = rref.rpc_sync().static_async_add("worker2", torch.ones(2), 1, 2) >>> print(ret) # prints tensor([4., 4.]) >>> >>> rref = rpc.remote("worker1", AsyncExecutionClass) >>> ret = rref.rpc_async().static_async_add("worker2", torch.ones(2), 1, 2).wait() >>> print(ret) # prints tensor([4., 4.]) >>> >>> rref = rpc.remote("worker1", AsyncExecutionClass) >>> ret = rref.remote().static_async_add("worker2", torch.ones(2), 1, 2).to_here() >>> print(ret) # prints tensor([4., 4.]) """ @functools.wraps(fn) def wrapper(*args, **kwargs): return fn(*args, **kwargs) # Can't declare and use attributes of function objects (mypy#2087) wrapper._wrapped_async_rpc_function = fn # type: ignore[attr-defined] return wrapper">

torch.distributed.rpc.functions — PyTorch 2.7 documentation (original) (raw)

mypy: allow-untyped-defs

import functools

[docs]def async_execution(fn): r""" A decorator for a function indicating that the return value of the function is guaranteed to be a :class:~torch.futures.Future object and this function can run asynchronously on the RPC callee. More specifically, the callee extracts the :class:~torch.futures.Future returned by the wrapped function and installs subsequent processing steps as a callback to that :class:~torch.futures.Future. The installed callback will read the value from the :class:~torch.futures.Future when completed and send the value back as the RPC response. That also means the returned :class:~torch.futures.Future only exists on the callee side and is never sent through RPC. This decorator is useful when the wrapped function's (fn) execution needs to pause and resume due to, e.g., containing :meth:~torch.distributed.rpc.rpc_async or waiting for other signals.

.. note:: To enable asynchronous execution, applications must pass the
    function object returned by this decorator to RPC APIs. If RPC detected
    attributes installed by this decorator, it knows that this function
    returns a ``Future`` object and will handle that accordingly.
    However, this does not mean this decorator has to be outmost one when
    defining a function. For example, when combined with ``@staticmethod``
    or ``@classmethod``, ``@rpc.functions.async_execution`` needs to be the
    inner decorator to allow the target function be recognized as a static
    or class function. This target function can still execute asynchronously
    because, when accessed, the static or class method preserves attributes
    installed by ``@rpc.functions.async_execution``.


Example::
    The returned :class:`~torch.futures.Future` object can come from
    :meth:`~torch.distributed.rpc.rpc_async`,
    :meth:`~torch.futures.Future.then`, or :class:`~torch.futures.Future`
    constructor. The example below shows directly using the
    :class:`~torch.futures.Future` returned by
    :meth:`~torch.futures.Future.then`.

    >>> from torch.distributed import rpc
    >>>
    >>> # omitting setup and shutdown RPC
    >>>
    >>> # On all workers
    >>> @rpc.functions.async_execution
    >>> def async_add_chained(to, x, y, z):
    >>>     # This function runs on "worker1" and returns immediately when
    >>>     # the callback is installed through the `then(cb)` API. In the
    >>>     # mean time, the `rpc_async` to "worker2" can run concurrently.
    >>>     # When the return value of that `rpc_async` arrives at
    >>>     # "worker1", "worker1" will run the lambda function accordingly
    >>>     # and set the value for the previously returned `Future`, which
    >>>     # will then trigger RPC to send the result back to "worker0".
    >>>     return rpc.rpc_async(to, torch.add, args=(x, y)).then(
    >>>         lambda fut: fut.wait() + z
    >>>     )
    >>>
    >>> # On worker0
    >>> # xdoctest: +SKIP
    >>> ret = rpc.rpc_sync(
    >>>     "worker1",
    >>>     async_add_chained,
    >>>     args=("worker2", torch.ones(2), 1, 1)
    >>> )
    >>> print(ret)  # prints tensor([3., 3.])

    When combined with TorchScript decorators, this decorator must be the
    outmost one.

    >>> from torch import Tensor
    >>> from torch.futures import Future
    >>> from torch.distributed import rpc
    >>>
    >>> # omitting setup and shutdown RPC
    >>>
    >>> # On all workers
    >>> @torch.jit.script
    >>> def script_add(x: Tensor, y: Tensor) -> Tensor:
    >>>     return x + y
    >>>
    >>> @rpc.functions.async_execution
    >>> @torch.jit.script
    >>> def async_add(to: str, x: Tensor, y: Tensor) -> Future[Tensor]:
    >>>     return rpc.rpc_async(to, script_add, (x, y))
    >>>
    >>> # On worker0
    >>> ret = rpc.rpc_sync(
    >>>     "worker1",
    >>>     async_add,
    >>>     args=("worker2", torch.ones(2), 1)
    >>> )
    >>> print(ret)  # prints tensor([2., 2.])

    When combined with static or class method, this decorator must be the
    inner one.

    >>> from torch.distributed import rpc
    >>>
    >>> # omitting setup and shutdown RPC
    >>>
    >>> # On all workers
    >>> class AsyncExecutionClass:
    >>>
    >>>     @staticmethod
    >>>     @rpc.functions.async_execution
    >>>     def static_async_add(to, x, y, z):
    >>>         return rpc.rpc_async(to, torch.add, args=(x, y)).then(
    >>>             lambda fut: fut.wait() + z
    >>>         )
    >>>
    >>>     @classmethod
    >>>     @rpc.functions.async_execution
    >>>     def class_async_add(cls, to, x, y, z):
    >>>         ret_fut = torch.futures.Future()
    >>>         rpc.rpc_async(to, torch.add, args=(x, y)).then(
    >>>             lambda fut: ret_fut.set_result(fut.wait() + z)
    >>>         )
    >>>         return ret_fut
    >>>
    >>>     @rpc.functions.async_execution
    >>>     def bound_async_add(self, to, x, y, z):
    >>>         return rpc.rpc_async(to, torch.add, args=(x, y)).then(
    >>>             lambda fut: fut.wait() + z
    >>>         )
    >>>
    >>> # On worker0
    >>> ret = rpc.rpc_sync(
    >>>     "worker1",
    >>>     AsyncExecutionClass.static_async_add,
    >>>     args=("worker2", torch.ones(2), 1, 2)
    >>> )
    >>> print(ret)  # prints tensor([4., 4.])
    >>>
    >>> ret = rpc.rpc_sync(
    >>>     "worker1",
    >>>     AsyncExecutionClass.class_async_add,
    >>>     args=("worker2", torch.ones(2), 1, 2)
    >>> )
    >>> print(ret)  # prints tensor([4., 4.])

    This decorator also works with RRef helpers, i.e., .
    :meth:`torch.distributed.rpc.RRef.rpc_sync`,
    :meth:`torch.distributed.rpc.RRef.rpc_async`, and
    :meth:`torch.distributed.rpc.RRef.remote`.

    >>> from torch.distributed import rpc
    >>>
    >>> # reuse the AsyncExecutionClass class above
    >>> rref = rpc.remote("worker1", AsyncExecutionClass)
    >>> ret = rref.rpc_sync().static_async_add("worker2", torch.ones(2), 1, 2)
    >>> print(ret)  # prints tensor([4., 4.])
    >>>
    >>> rref = rpc.remote("worker1", AsyncExecutionClass)
    >>> ret = rref.rpc_async().static_async_add("worker2", torch.ones(2), 1, 2).wait()
    >>> print(ret)  # prints tensor([4., 4.])
    >>>
    >>> rref = rpc.remote("worker1", AsyncExecutionClass)
    >>> ret = rref.remote().static_async_add("worker2", torch.ones(2), 1, 2).to_here()
    >>> print(ret)  # prints tensor([4., 4.])
"""

@functools.wraps(fn)
def wrapper(*args, **kwargs):
    return fn(*args, **kwargs)

# Can't declare and use attributes of function objects (mypy#2087)
wrapper._wrapped_async_rpc_function = fn  # type: ignore[attr-defined]
return wrapper