>> # an Embedding module containing 10 tensors of size 3 >>> embedding = nn.Embedding(10, 3) >>> # a batch of 2 samples of 4 indices each >>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]]) >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> embedding(input) tensor([[[-0.0251, -1.6902, 0.7172], [-0.6431, 0.0748, 0.6969], [ 1.4970, 1.3448, -0.9685], [-0.3677, -2.7265, -0.1685]], [[ 1.4970, 1.3448, -0.9685], [ 0.4362, -0.4004, 0.9400], [-0.6431, 0.0748, 0.6969], [ 0.9124, -2.3616, 1.1151]]]) >>> # example with padding_idx >>> embedding = nn.Embedding(10, 3, padding_idx=0) >>> input = torch.LongTensor([[0, 2, 0, 5]]) >>> embedding(input) tensor([[[ 0.0000, 0.0000, 0.0000], [ 0.1535, -2.0309, 0.9315], [ 0.0000, 0.0000, 0.0000], [-0.1655, 0.9897, 0.0635]]]) >>> # example of changing `pad` vector >>> padding_idx = 0 >>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx) >>> embedding.weight Parameter containing: tensor([[ 0.0000, 0.0000, 0.0000], [-0.7895, -0.7089, -0.0364], [ 0.6778, 0.5803, 0.2678]], requires_grad=True) >>> with torch.no_grad(): ... embedding.weight[padding_idx] = torch.ones(3) >>> embedding.weight Parameter containing: tensor([[ 1.0000, 1.0000, 1.0000], [-0.7895, -0.7089, -0.0364], [ 0.6778, 0.5803, 0.2678]], requires_grad=True) """ __constants__ = [ "num_embeddings", "embedding_dim", "padding_idx", "max_norm", "norm_type", "scale_grad_by_freq", "sparse", ] num_embeddings: int embedding_dim: int padding_idx: Optional[int] max_norm: Optional[float] norm_type: float scale_grad_by_freq: bool weight: Tensor freeze: bool sparse: bool def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, _freeze: bool = False, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq if _weight is None: self.weight = Parameter( torch.empty((num_embeddings, embedding_dim), **factory_kwargs), requires_grad=not _freeze, ) self.reset_parameters() else: assert list(_weight.shape) == [ num_embeddings, embedding_dim, ], "Shape of weight does not match num_embeddings and embedding_dim" self.weight = Parameter(_weight, requires_grad=not _freeze) self.sparse = sparse def reset_parameters(self) -> None: init.normal_(self.weight) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: return F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) def extra_repr(self) -> str: s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.max_norm is not None: s += ", max_norm={max_norm}" if self.norm_type != 2: s += ", norm_type={norm_type}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" return s.format(**self.__dict__)">

torch.nn.modules.sparse — PyTorch 2.7 documentation (original) (raw)

mypy: allow-untyped-defs

from typing import Optional

import torch from torch import Tensor from torch.nn import functional as F, init from torch.nn.parameter import Parameter

from .module import Module

all = ["Embedding", "EmbeddingBag"]

[docs]class Embedding(Module): r"""A simple lookup table that stores embeddings of a fixed dictionary and size.

This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding
word embeddings.

Args:
    num_embeddings (int): size of the dictionary of embeddings
    embedding_dim (int): the size of each embedding vector
    padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
                                 therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
                                 i.e. it remains as a fixed "pad". For a newly constructed Embedding,
                                 the embedding vector at :attr:`padding_idx` will default to all zeros,
                                 but can be updated to another value to be used as the padding vector.
    max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
                                is renormalized to have norm :attr:`max_norm`.
    norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
    scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
                                            the words in the mini-batch. Default ``False``.
    sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
                             See Notes for more details regarding sparse gradients.

Attributes:
    weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
                     initialized from :math:`\mathcal{N}(0, 1)`

Shape:
    - Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract
    - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`

.. note::
    Keep in mind that only a limited number of optimizers support
    sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
    :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)

.. note::
    When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the
    :attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be
    modified in-place, performing a differentiable operation on ``Embedding.weight`` before
    calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when
    :attr:`max_norm` is not ``None``. For example::

        n, d, m = 3, 5, 7
        embedding = nn.Embedding(n, d, max_norm=1.0)
        W = torch.randn((m, d), requires_grad=True)
        idx = torch.tensor([1, 2])
        a = embedding.weight.clone() @ W.t()  # weight must be cloned for this to be differentiable
        b = embedding(idx) @ W.t()  # modifies weight in-place
        out = (a.unsqueeze(0) + b.unsqueeze(1))
        loss = out.sigmoid().prod()
        loss.backward()

Examples::

    >>> # an Embedding module containing 10 tensors of size 3
    >>> embedding = nn.Embedding(10, 3)
    >>> # a batch of 2 samples of 4 indices each
    >>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
    >>> # xdoctest: +IGNORE_WANT("non-deterministic")
    >>> embedding(input)
    tensor([[[-0.0251, -1.6902,  0.7172],
             [-0.6431,  0.0748,  0.6969],
             [ 1.4970,  1.3448, -0.9685],
             [-0.3677, -2.7265, -0.1685]],

            [[ 1.4970,  1.3448, -0.9685],
             [ 0.4362, -0.4004,  0.9400],
             [-0.6431,  0.0748,  0.6969],
             [ 0.9124, -2.3616,  1.1151]]])


    >>> # example with padding_idx
    >>> embedding = nn.Embedding(10, 3, padding_idx=0)
    >>> input = torch.LongTensor([[0, 2, 0, 5]])
    >>> embedding(input)
    tensor([[[ 0.0000,  0.0000,  0.0000],
             [ 0.1535, -2.0309,  0.9315],
             [ 0.0000,  0.0000,  0.0000],
             [-0.1655,  0.9897,  0.0635]]])

    >>> # example of changing `pad` vector
    >>> padding_idx = 0
    >>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)
    >>> embedding.weight
    Parameter containing:
    tensor([[ 0.0000,  0.0000,  0.0000],
            [-0.7895, -0.7089, -0.0364],
            [ 0.6778,  0.5803,  0.2678]], requires_grad=True)
    >>> with torch.no_grad():
    ...     embedding.weight[padding_idx] = torch.ones(3)
    >>> embedding.weight
    Parameter containing:
    tensor([[ 1.0000,  1.0000,  1.0000],
            [-0.7895, -0.7089, -0.0364],
            [ 0.6778,  0.5803,  0.2678]], requires_grad=True)
"""

__constants__ = [
    "num_embeddings",
    "embedding_dim",
    "padding_idx",
    "max_norm",
    "norm_type",
    "scale_grad_by_freq",
    "sparse",
]

num_embeddings: int
embedding_dim: int
padding_idx: Optional[int]
max_norm: Optional[float]
norm_type: float
scale_grad_by_freq: bool
weight: Tensor
freeze: bool
sparse: bool

def __init__(
    self,
    num_embeddings: int,
    embedding_dim: int,
    padding_idx: Optional[int] = None,
    max_norm: Optional[float] = None,
    norm_type: float = 2.0,
    scale_grad_by_freq: bool = False,
    sparse: bool = False,
    _weight: Optional[Tensor] = None,
    _freeze: bool = False,
    device=None,
    dtype=None,
) -> None:
    factory_kwargs = {"device": device, "dtype": dtype}
    super().__init__()
    self.num_embeddings = num_embeddings
    self.embedding_dim = embedding_dim
    if padding_idx is not None:
        if padding_idx > 0:
            assert (
                padding_idx < self.num_embeddings
            ), "Padding_idx must be within num_embeddings"
        elif padding_idx < 0:
            assert (
                padding_idx >= -self.num_embeddings
            ), "Padding_idx must be within num_embeddings"
            padding_idx = self.num_embeddings + padding_idx
    self.padding_idx = padding_idx
    self.max_norm = max_norm
    self.norm_type = norm_type
    self.scale_grad_by_freq = scale_grad_by_freq
    if _weight is None:
        self.weight = Parameter(
            torch.empty((num_embeddings, embedding_dim), **factory_kwargs),
            requires_grad=not _freeze,
        )
        self.reset_parameters()
    else:
        assert list(_weight.shape) == [
            num_embeddings,
            embedding_dim,
        ], "Shape of weight does not match num_embeddings and embedding_dim"
        self.weight = Parameter(_weight, requires_grad=not _freeze)

    self.sparse = sparse

def reset_parameters(self) -> None:
    init.normal_(self.weight)
    self._fill_padding_idx_with_zero()

def _fill_padding_idx_with_zero(self) -> None:
    if self.padding_idx is not None:
        with torch.no_grad():
            self.weight[self.padding_idx].fill_(0)

def forward(self, input: Tensor) -> Tensor:
    return F.embedding(
        input,
        self.weight,
        self.padding_idx,
        self.max_norm,
        self.norm_type,
        self.scale_grad_by_freq,
        self.sparse,
    )

def extra_repr(self) -> str:
    s = "{num_embeddings}, {embedding_dim}"
    if self.padding_idx is not None:
        s += ", padding_idx={padding_idx}"
    if self.max_norm is not None:
        s += ", max_norm={max_norm}"
    if self.norm_type != 2:
        s += ", norm_type={norm_type}"
    if self.scale_grad_by_freq is not False:
        s += ", scale_grad_by_freq={scale_grad_by_freq}"
    if self.sparse is not False:
        s += ", sparse=True"
    return s.format(**self.__dict__)

[docs] @classmethod def from_pretrained( cls, embeddings, freeze=True, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, ): r"""Create Embedding instance from given 2-dimensional FloatTensor.

    Args:
        embeddings (Tensor): FloatTensor containing weights for the Embedding.
            First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
        freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
            Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
                                     therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
                                     i.e. it remains as a fixed "pad".
        max_norm (float, optional): See module initialization documentation.
        norm_type (float, optional): See module initialization documentation. Default ``2``.
        scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
        sparse (bool, optional): See module initialization documentation.

    Examples::

        >>> # FloatTensor containing pretrained weights
        >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
        >>> embedding = nn.Embedding.from_pretrained(weight)
        >>> # Get embeddings for index 1
        >>> input = torch.LongTensor([1])
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> embedding(input)
        tensor([[ 4.0000,  5.1000,  6.3000]])
    """
    assert (
        embeddings.dim() == 2
    ), "Embeddings parameter is expected to be 2-dimensional"
    rows, cols = embeddings.shape
    embedding = cls(
        num_embeddings=rows,
        embedding_dim=cols,
        _weight=embeddings,
        _freeze=freeze,
        padding_idx=padding_idx,
        max_norm=max_norm,
        norm_type=norm_type,
        scale_grad_by_freq=scale_grad_by_freq,
        sparse=sparse,
    )
    return embedding

[docs]class EmbeddingBag(Module): r"""Compute sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings.

For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`,
and with 2D inputs, this class

    * with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``,
    * with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``,
    * with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``.

However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
operations.

EmbeddingBag also supports per-sample weights as an argument to the forward
pass. This scales the output of the Embedding before performing a weighted
reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
:attr:`per_sample_weights`.

Args:
    num_embeddings (int): size of the dictionary of embeddings
    embedding_dim (int): the size of each embedding vector
    max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
                                is renormalized to have norm :attr:`max_norm`.
    norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
    scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
                                            the words in the mini-batch. Default ``False``.
                                            Note: this option is not supported when ``mode="max"``.
    mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
                             ``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
                             into consideration. ``"mean"`` computes the average of the values
                             in the bag, ``"max"`` computes the max value over each bag.
                             Default: ``"mean"``
    sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
                             Notes for more details regarding sparse gradients. Note: this option is not
                             supported when ``mode="max"``.
    include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element
                                  is equivalent to the size of `indices`. This matches the CSR format.
    padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
                                 gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
                                 during training, i.e. it remains as a fixed "pad". For a newly constructed
                                 EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all
                                 zeros, but can be updated to another value to be used as the padding vector.
                                 Note that the embedding vector at :attr:`padding_idx` is excluded from the
                                 reduction.

Attributes:
    weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
                     initialized from :math:`\mathcal{N}(0, 1)`.

Examples::

    >>> # an EmbeddingBag module containing 10 tensors of size 3
    >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
    >>> # a batch of 2 samples of 4 indices each
    >>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
    >>> offsets = torch.tensor([0, 4], dtype=torch.long)
    >>> # xdoctest: +IGNORE_WANT("non-deterministic")
    >>> embedding_sum(input, offsets)
    tensor([[-0.8861, -5.4350, -0.0523],
            [ 1.1306, -2.5798, -1.0044]])

    >>> # Example with padding_idx
    >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2)
    >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long)
    >>> offsets = torch.tensor([0, 4], dtype=torch.long)
    >>> embedding_sum(input, offsets)
    tensor([[ 0.0000,  0.0000,  0.0000],
            [-0.7082,  3.2145, -2.6251]])

    >>> # An EmbeddingBag can be loaded from an Embedding like so
    >>> embedding = nn.Embedding(10, 3, padding_idx=2)
    >>> embedding_sum = nn.EmbeddingBag.from_pretrained(
            embedding.weight,
            padding_idx=embedding.padding_idx,
            mode='sum')
"""

__constants__ = [
    "num_embeddings",
    "embedding_dim",
    "max_norm",
    "norm_type",
    "scale_grad_by_freq",
    "mode",
    "sparse",
    "include_last_offset",
    "padding_idx",
]

num_embeddings: int
embedding_dim: int
max_norm: Optional[float]
norm_type: float
scale_grad_by_freq: bool
weight: Tensor
mode: str
sparse: bool
include_last_offset: bool
padding_idx: Optional[int]

def __init__(
    self,
    num_embeddings: int,
    embedding_dim: int,
    max_norm: Optional[float] = None,
    norm_type: float = 2.0,
    scale_grad_by_freq: bool = False,
    mode: str = "mean",
    sparse: bool = False,
    _weight: Optional[Tensor] = None,
    include_last_offset: bool = False,
    padding_idx: Optional[int] = None,
    device=None,
    dtype=None,
) -> None:
    factory_kwargs = {"device": device, "dtype": dtype}
    super().__init__()
    self.num_embeddings = num_embeddings
    self.embedding_dim = embedding_dim
    self.max_norm = max_norm
    self.norm_type = norm_type
    self.scale_grad_by_freq = scale_grad_by_freq
    if padding_idx is not None:
        if padding_idx > 0:
            assert (
                padding_idx < self.num_embeddings
            ), "padding_idx must be within num_embeddings"
        elif padding_idx < 0:
            assert (
                padding_idx >= -self.num_embeddings
            ), "padding_idx must be within num_embeddings"
            padding_idx = self.num_embeddings + padding_idx
    self.padding_idx = padding_idx
    if _weight is None:
        self.weight = Parameter(
            torch.empty((num_embeddings, embedding_dim), **factory_kwargs)
        )
        self.reset_parameters()
    else:
        assert list(_weight.shape) == [
            num_embeddings,
            embedding_dim,
        ], "Shape of weight does not match num_embeddings and embedding_dim"
        self.weight = Parameter(_weight)
    self.mode = mode
    self.sparse = sparse
    self.include_last_offset = include_last_offset

def reset_parameters(self) -> None:
    init.normal_(self.weight)
    self._fill_padding_idx_with_zero()

def _fill_padding_idx_with_zero(self) -> None:
    if self.padding_idx is not None:
        with torch.no_grad():
            self.weight[self.padding_idx].fill_(0)

[docs] def forward( self, input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None, ) -> Tensor: """Forward pass of EmbeddingBag.

    Args:
        input (Tensor): Tensor containing bags of indices into the embedding matrix.
        offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
            the starting index position of each bag (sequence) in :attr:`input`.
        per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
            to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
            must have exactly the same shape as input and is treated as having the same
            :attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.

    Returns:
        Tensor output shape of `(B, embedding_dim)`.

    .. note::

        A few notes about ``input`` and ``offsets``:

        - :attr:`input` and :attr:`offsets` have to be of the same type, either int or long

        - If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
          each of fixed length ``N``, and this will return ``B`` values aggregated in a way
          depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.

        - If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
          multiple bags (sequences).  :attr:`offsets` is required to be a 1D tensor containing the
          starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`,
          :attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have
          returned vectors filled by zeros.
    """
    return F.embedding_bag(
        input,
        self.weight,
        offsets,
        self.max_norm,
        self.norm_type,
        self.scale_grad_by_freq,
        self.mode,
        self.sparse,
        per_sample_weights,
        self.include_last_offset,
        self.padding_idx,
    )


def extra_repr(self) -> str:
    s = "{num_embeddings}, {embedding_dim}"
    if self.max_norm is not None:
        s += ", max_norm={max_norm}"
    if self.norm_type != 2:
        s += ", norm_type={norm_type}"
    if self.scale_grad_by_freq is not False:
        s += ", scale_grad_by_freq={scale_grad_by_freq}"
    s += ", mode={mode}"
    if self.padding_idx is not None:
        s += ", padding_idx={padding_idx}"
    return s.format(**{k: repr(v) for k, v in self.__dict__.items()})

[docs] @classmethod def from_pretrained( cls, embeddings: Tensor, freeze: bool = True, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, mode: str = "mean", sparse: bool = False, include_last_offset: bool = False, padding_idx: Optional[int] = None, ) -> "EmbeddingBag": r"""Create EmbeddingBag instance from given 2-dimensional FloatTensor.

    Args:
        embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.
            First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.
        freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
            Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``
        max_norm (float, optional): See module initialization documentation. Default: ``None``
        norm_type (float, optional): See module initialization documentation. Default ``2``.
        scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
        mode (str, optional): See module initialization documentation. Default: ``"mean"``
        sparse (bool, optional): See module initialization documentation. Default: ``False``.
        include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.
        padding_idx (int, optional): See module initialization documentation. Default: ``None``.

    Examples::

        >>> # FloatTensor containing pretrained weights
        >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
        >>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)
        >>> # Get embeddings for index 1
        >>> input = torch.LongTensor([[1, 0]])
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> embeddingbag(input)
        tensor([[ 2.5000,  3.7000,  4.6500]])
    """
    assert (
        embeddings.dim() == 2
    ), "Embeddings parameter is expected to be 2-dimensional"
    rows, cols = embeddings.shape
    embeddingbag = cls(
        num_embeddings=rows,
        embedding_dim=cols,
        _weight=embeddings,
        max_norm=max_norm,
        norm_type=norm_type,
        scale_grad_by_freq=scale_grad_by_freq,
        mode=mode,
        sparse=sparse,
        include_last_offset=include_last_offset,
        padding_idx=padding_idx,
    )
    embeddingbag.weight.requires_grad = not freeze
    return embeddingbag