torch.optim.adamax — PyTorch 2.7 documentation (original) (raw)

mypy: allow-untyped-defs

from typing import cast, Optional, Union

import torch from torch import Tensor

from .optimizer import ( _capturable_doc, _default_to_fused_or_foreach, _differentiable_doc, _disable_dynamo_if_unsupported, _foreach_doc, _get_capturable_supported_devices, _get_scalar_dtype, _get_value, _maximize_doc, _params_doc, _use_grad_for_differentiable, _view_as_real, Optimizer, ParamsT, )

all = ["Adamax", "adamax"]

[docs]class Adamax(Optimizer): def init( self, params: ParamsT, lr: Union[float, Tensor] = 2e-3, betas: tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, foreach: Optional[bool] = None, *, maximize: bool = False, differentiable: bool = False, capturable: bool = False, ): if isinstance(lr, Tensor) and lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}")

    defaults = dict(
        lr=lr,
        betas=betas,
        eps=eps,
        weight_decay=weight_decay,
        foreach=foreach,
        maximize=maximize,
        differentiable=differentiable,
        capturable=capturable,
    )
    super().__init__(params, defaults)

def __setstate__(self, state):
    super().__setstate__(state)
    for group in self.param_groups:
        group.setdefault("foreach", None)
        group.setdefault("maximize", False)
        group.setdefault("differentiable", False)
        group.setdefault("capturable", False)
        for p in group["params"]:
            p_state = self.state.get(p, [])
            if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
                step_val = float(p_state["step"])
                p_state["step"] = (
                    torch.tensor(
                        step_val, dtype=_get_scalar_dtype(), device=p.device
                    )
                    if group["capturable"]
                    else torch.tensor(step_val, dtype=_get_scalar_dtype())
                )

def _init_group(
    self, group, params_with_grad, grads, exp_avgs, exp_infs, state_steps
):
    has_complex = False
    for p in group["params"]:
        if p.grad is None:
            continue
        has_complex |= torch.is_complex(p)
        params_with_grad.append(p)
        if p.grad.is_sparse:
            raise RuntimeError("Adamax does not support sparse gradients")
        grads.append(p.grad)

        state = self.state[p]

        # State initialization
        if len(state) == 0:
            state["step"] = (
                torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
                if group["capturable"]
                else torch.tensor(0.0, dtype=_get_scalar_dtype())
            )
            state["exp_avg"] = torch.zeros_like(
                p, memory_format=torch.preserve_format
            )
            state["exp_inf"] = torch.zeros_like(
                p, memory_format=torch.preserve_format
            )

        exp_avgs.append(state["exp_avg"])
        exp_infs.append(state["exp_inf"])
        state_steps.append(state["step"])

    return has_complex

[docs] @_use_grad_for_differentiable def step(self, closure=None): """Performs a single optimization step.

    Args:
        closure (Callable, optional): A closure that reevaluates the model
            and returns the loss.
    """
    self._cuda_graph_capture_health_check()

    loss = None
    if closure is not None:
        with torch.enable_grad():
            loss = closure()

    for group in self.param_groups:
        params_with_grad: list[Tensor] = []
        grads: list[Tensor] = []
        exp_avgs: list[Tensor] = []
        exp_infs: list[Tensor] = []
        state_steps: list[Tensor] = []

        beta1, beta2 = group["betas"]
        eps = group["eps"]
        lr = group["lr"]
        weight_decay = group["weight_decay"]
        foreach = group["foreach"]
        maximize = group["maximize"]
        differentiable = group["differentiable"]
        capturable = group["capturable"]

        has_complex = self._init_group(
            group, params_with_grad, grads, exp_avgs, exp_infs, state_steps
        )

        adamax(
            params_with_grad,
            grads,
            exp_avgs,
            exp_infs,
            state_steps,
            eps=eps,
            beta1=beta1,
            beta2=beta2,
            lr=lr,
            weight_decay=weight_decay,
            foreach=foreach,
            maximize=maximize,
            differentiable=differentiable,
            capturable=capturable,
            has_complex=has_complex,
        )

    return loss

Adamax.doc = ( r"""Implements Adamax algorithm (a variant of Adam based on infinity norm).

.. math::
   \begin{aligned}
        &\rule{110mm}{0.4pt}                                                                 \\
        &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
            \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
            \: \lambda \text{ (weight decay)},                                                \\
        &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
        &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
            u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
        &\rule{110mm}{0.4pt}                                                                 \\
        &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
        &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
        &\hspace{5mm}if \: \lambda \neq 0                                                    \\
        &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
        &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
        &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
        &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
        &\bf{return} \:  \theta_t                                                     \\[-1.ex]
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
   \end{aligned}

For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
"""
+ rf"""
Args:
    {_params_doc}
    lr (float, Tensor, optional): learning rate (default: 2e-3)
    betas (Tuple[float, float], optional): coefficients used for computing
        running averages of gradient and its square
    eps (float, optional): term added to the denominator to improve
        numerical stability (default: 1e-8)
    weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
    {_foreach_doc}
    {_maximize_doc}
    {_differentiable_doc}
    {_capturable_doc}

.. _Adam\: A Method for Stochastic Optimization:
    https://arxiv.org/abs/1412.6980

"""

)

def _single_tensor_adamax( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_infs: list[Tensor], state_steps: list[Tensor], *, eps: float, beta1: float, beta2: float, lr: float, weight_decay: float, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): for i, param in enumerate(params): grad = grads[i] grad = grad if not maximize else -grad exp_avg = exp_avgs[i] exp_inf = exp_infs[i] step_t = state_steps[i]

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if not torch.compiler.is_compiling() and capturable:
        capturable_supported_devices = _get_capturable_supported_devices()
        assert (
            param.device.type == step_t.device.type
            and param.device.type in capturable_supported_devices
        ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

    # update step
    step_t += 1

    if weight_decay != 0:
        grad = grad.add(param, alpha=weight_decay)

    if torch.is_complex(param):
        param = torch.view_as_real(param)
        grad = torch.view_as_real(grad)
        exp_avg = torch.view_as_real(exp_avg)
        exp_inf = torch.view_as_real(exp_inf)

    # Update biased first moment estimate.
    exp_avg.lerp_(grad, 1 - beta1)
    # Update the exponentially weighted infinity norm.
    if not differentiable:
        torch.maximum(
            exp_inf.mul_(beta2),
            grad.abs().add_(eps),
            out=exp_inf,
        )
    else:
        norm_buf = torch.cat(
            [exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)],
            0,
        )
        exp_inf.copy_(torch.amax(norm_buf, 0, keepdim=False))

    if capturable:
        # why jump through extra hoops and negate bias_correction? check out #121238
        # once fixed, we should use bias_correction with addcdiv value=-1 for readability
        neg_bias_correction = beta1**step_t - 1
        neg_bias_correction.div_(lr)
        denom = exp_inf * neg_bias_correction
        param.addcdiv_(exp_avg, denom)
    else:
        bias_correction = 1 - beta1 ** _get_value(step_t)
        clr = lr / bias_correction

        param.addcdiv_(exp_avg, exp_inf, value=-clr)

def _multi_tensor_adamax( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_infs: list[Tensor], state_steps: list[Tensor], *, eps: float, beta1: float, beta2: float, lr: float, weight_decay: float, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): assert not differentiable, "_foreach ops don't support autograd"

if len(params) == 0:
    return

# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch.compiler.is_compiling() and capturable:
    capturable_supported_devices = _get_capturable_supported_devices(
        supports_xla=False
    )
    assert all(
        p.device.type == step.device.type
        and p.device.type in capturable_supported_devices
        for p, step in zip(params, state_steps)
    ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
    [params, grads, exp_avgs, exp_infs, state_steps]  # type: ignore[list-item]
)
for (
    grouped_params_,
    grouped_grads_,
    grouped_exp_avgs_,
    grouped_exp_infs_,
    grouped_state_steps_,
), _ in grouped_tensors.values():
    grouped_params = cast(list[Tensor], grouped_params_)
    grouped_grads = cast(list[Tensor], grouped_grads_)
    grouped_exp_avgs = cast(list[Tensor], grouped_exp_avgs_)
    grouped_exp_infs = cast(list[Tensor], grouped_exp_infs_)
    grouped_state_steps = cast(list[Tensor], grouped_state_steps_)

    if has_complex:
        _view_as_real(
            grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_infs
        )

    if maximize:
        grouped_grads = torch._foreach_neg(grouped_grads)  # type: ignore[assignment]

    # Update steps
    # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
    # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
    # wrapped it once now. The alpha is required to assure we go to the right overload.
    if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu:
        torch._foreach_add_(
            grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
        )
    else:
        torch._foreach_add_(grouped_state_steps, 1)

    if weight_decay != 0:
        if maximize:
            # Re-use the intermediate memory (grouped_grads) already allocated for maximize
            torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay)
        else:
            grouped_grads = torch._foreach_add(  # type: ignore[assignment]
                grouped_grads, grouped_params, alpha=weight_decay
            )

    # Update biased first moment estimate.
    torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)

    # Update the exponentially weighted infinity norm.
    torch._foreach_mul_(grouped_exp_infs, beta2)

    # in this case, we need to introduce a copy of the grads
    # since one has not been introduced previously
    if not maximize and weight_decay == 0:
        grouped_grads = torch._foreach_abs(grouped_grads)  # type: ignore[assignment]
    else:
        torch._foreach_abs_(grouped_grads)

    torch._foreach_add_(grouped_grads, eps)
    torch._foreach_maximum_(grouped_exp_infs, grouped_grads)

    bias_corrections: Union[tuple[Tensor, ...], list[Tensor]]
    if capturable:
        bias_corrections = torch._foreach_pow(beta1, grouped_state_steps)
        # foreach_sub doesn't allow a scalar as the first arg
        torch._foreach_sub_(bias_corrections, 1)
        torch._foreach_div_(bias_corrections, lr)

        denom = torch._foreach_mul(grouped_exp_infs, bias_corrections)
        torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, denom)
    else:
        bias_corrections = [
            1 - beta1 ** _get_value(step) for step in grouped_state_steps
        ]
        step_size = [(_get_value(lr) / bc) * -1 for bc in bias_corrections]
        torch._foreach_addcdiv_(
            grouped_params, grouped_exp_avgs, grouped_exp_infs, step_size
        )

@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adamax) def adamax( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_infs: list[Tensor], state_steps: list[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim foreach: Optional[bool] = None, maximize: bool = False, differentiable: bool = False, capturable: bool = False, has_complex: bool = False, *, eps: float, beta1: float, beta2: float, lr: float, weight_decay: float, ): r"""Functional API that performs adamax algorithm computation.

See :class:`~torch.optim.Adamax` for details.
"""

if not torch.compiler.is_compiling() and not all(
    isinstance(t, torch.Tensor) for t in state_steps
):
    raise RuntimeError(
        "API has changed, `state_steps` argument must contain a list of singleton tensors"
    )

if foreach is None:
    _, foreach = _default_to_fused_or_foreach(
        params, differentiable, use_fused=False
    )

if foreach and torch.jit.is_scripting():
    raise RuntimeError("torch.jit.script not supported with foreach optimizers")

if foreach and not torch.jit.is_scripting():
    func = _multi_tensor_adamax
else:
    func = _single_tensor_adamax

func(
    params,
    grads,
    exp_avgs,
    exp_infs,
    state_steps,
    eps=eps,
    beta1=beta1,
    beta2=beta2,
    lr=lr,
    weight_decay=weight_decay,
    maximize=maximize,
    differentiable=differentiable,
    has_complex=has_complex,
    capturable=capturable,
)