torch.optim.nadam — PyTorch 2.7 documentation (original) (raw)

mypy: allow-untyped-defs

r"""Implementation for the NAdam algorithm.""" from typing import cast, Optional, Union

import torch from torch import Tensor

from .optimizer import ( _capturable_doc, _default_to_fused_or_foreach, _differentiable_doc, _disable_dynamo_if_unsupported, _foreach_doc, _get_capturable_supported_devices, _get_scalar_dtype, _get_value, _maximize_doc, _params_doc, _stack_if_compiling, _use_grad_for_differentiable, _view_as_real, Optimizer, ParamsT, )

all = ["NAdam", "nadam"]

[docs]class NAdam(Optimizer): # noqa: D101 def init( self, params: ParamsT, lr: Union[float, Tensor] = 2e-3, betas: tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, momentum_decay: float = 4e-3, decoupled_weight_decay: bool = False, *, foreach: Optional[bool] = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, ): # noqa: D107 if isinstance(lr, Tensor) and lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not 0.0 <= momentum_decay: raise ValueError(f"Invalid momentum_decay value: {momentum_decay}") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, momentum_decay=momentum_decay, decoupled_weight_decay=decoupled_weight_decay, maximize=maximize, foreach=foreach, capturable=capturable, differentiable=differentiable, ) super().init(params, defaults)

def __setstate__(self, state):  # noqa: D105
    super().__setstate__(state)
    for group in self.param_groups:
        group.setdefault("maximize", False)
        group.setdefault("foreach", None)
        group.setdefault("capturable", False)
        group.setdefault("differentiable", False)
        group.setdefault("decoupled_weight_decay", False)
        for p in group["params"]:
            p_state = self.state.get(p, [])
            if len(p_state) != 0:
                if not torch.is_tensor(p_state["step"]):
                    step_val = float(p_state["step"])
                    p_state["step"] = (
                        torch.tensor(
                            step_val, dtype=_get_scalar_dtype(), device=p.device
                        )
                        if group["capturable"]
                        else torch.tensor(step_val, dtype=_get_scalar_dtype())
                    )
                if not torch.is_tensor(p_state["mu_product"]):
                    mu_prod_val = p_state["mu_product"]
                    p_state["mu_product"] = (
                        torch.tensor(
                            mu_prod_val, dtype=_get_scalar_dtype(), device=p.device
                        )
                        if group["capturable"]
                        else torch.tensor(mu_prod_val, dtype=_get_scalar_dtype())
                    )

def _init_group(
    self,
    group,
    params_with_grad,
    grads,
    exp_avgs,
    exp_avg_sqs,
    mu_products,
    state_steps,
):
    has_complex = False
    for p in group["params"]:
        if p.grad is not None:
            has_complex |= torch.is_complex(p)
            params_with_grad.append(p)
            if p.grad.is_sparse:
                raise RuntimeError("NAdam does not support sparse gradients")
            grads.append(p.grad)

            state = self.state[p]
            # Lazy state initialization
            if len(state) == 0:
                # note(crcrpar): [special device hosting for step]
                # Deliberately host `step` and `mu_product` on CPU if capturable is False.
                # This is because kernel launches are costly on CUDA and XLA.
                state["step"] = (
                    torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
                    if group["capturable"]
                    else torch.tensor(0.0, dtype=_get_scalar_dtype())
                )
                state["mu_product"] = (
                    torch.ones((), dtype=_get_scalar_dtype(), device=p.device)
                    if group["capturable"]
                    else torch.tensor(1.0, dtype=_get_scalar_dtype())
                )
                # Exponential moving average of gradient values
                state["exp_avg"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )
                # Exponential moving average of squared gradient values
                state["exp_avg_sq"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )

            exp_avgs.append(state["exp_avg"])
            exp_avg_sqs.append(state["exp_avg_sq"])
            mu_products.append(state["mu_product"])
            state_steps.append(state["step"])
    return has_complex

[docs] @_use_grad_for_differentiable def step(self, closure=None): """Perform a single optimization step.

    Args:
        closure (Callable, optional): A closure that reevaluates the model
            and returns the loss.
    """
    self._cuda_graph_capture_health_check()

    loss = None
    if closure is not None:
        with torch.enable_grad():
            loss = closure()

    for group in self.param_groups:
        params_with_grad: list[Tensor] = []
        grads: list[Tensor] = []
        exp_avgs: list[Tensor] = []
        exp_avg_sqs: list[Tensor] = []
        mu_products: list[Tensor] = []
        state_steps: list[Tensor] = []
        beta1, beta2 = cast(tuple[float, float], group["betas"])

        has_complex = self._init_group(
            group,
            params_with_grad,
            grads,
            exp_avgs,
            exp_avg_sqs,
            mu_products,
            state_steps,
        )

        nadam(
            params_with_grad,
            grads,
            exp_avgs,
            exp_avg_sqs,
            mu_products,
            state_steps,
            beta1=beta1,
            beta2=beta2,
            lr=group["lr"],
            weight_decay=group["weight_decay"],
            momentum_decay=group["momentum_decay"],
            eps=group["eps"],
            maximize=group["maximize"],
            decoupled_weight_decay=group["decoupled_weight_decay"],
            foreach=group["foreach"],
            capturable=group["capturable"],
            differentiable=group["differentiable"],
            has_complex=has_complex,
        )

    return loss

NAdam.doc = ( r"""Implements NAdam algorithm.

.. math::
   \begin{aligned}
        &\rule{110mm}{0.4pt}                                                                 \\
        &\textbf{input}      : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},
            \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}                   \\
        &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)}    \\
        &\hspace{13mm} \: \textit{decoupled\_weight\_decay}, \:\textit{maximize}             \\
        &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
            v_0 \leftarrow 0 \text{ ( second moment)}                                 \\[-1.ex]
        &\rule{110mm}{0.4pt}                                                                 \\
        &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
        &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
        &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
        &\hspace{5mm}\textbf{else}                                                           \\
        &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
        &\hspace{5mm} \theta_t \leftarrow \theta_{t-1}                                       \\
        &\hspace{5mm} \textbf{if} \: \lambda \neq 0                                          \\
        &\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
        &\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1}                    \\
        &\hspace{10mm}\textbf{else}                                                          \\
        &\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1}                             \\
        &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2}  0.96^{t \psi} \big)     \\
        &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\
        &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
        &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
        &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]
        & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i})                         \\
        &\hspace{5mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                   \\
        &\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
            \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
        &\bf{return} \:  \theta_t                                                     \\[-1.ex]
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
   \end{aligned}

For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.
"""
+ rf"""
Args:
    {_params_doc}
    lr (float, Tensor, optional): learning rate (default: 2e-3)
    betas (Tuple[float, float], optional): coefficients used for computing
        running averages of gradient and its square (default: (0.9, 0.999))
    eps (float, optional): term added to the denominator to improve
        numerical stability (default: 1e-8)
    weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
    momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)
    decoupled_weight_decay (bool, optional): whether to decouple the weight
        decay as in AdamW to obtain NAdamW. If True, the algorithm does not
        accumulate weight decay in the momentum nor variance. (default: False)
    {_foreach_doc}
    {_maximize_doc}
    {_capturable_doc}
    {_differentiable_doc}

.. _Incorporating Nesterov Momentum into Adam:
    https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
.. _Decoupled Weight Decay Regularization:
    https://arxiv.org/abs/1711.05101

"""

)

def _single_tensor_nadam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], mu_products: list[Tensor], state_steps: list[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, momentum_decay: float, eps: float, decoupled_weight_decay: bool, maximize: bool, capturable: bool, differentiable: bool, has_complex: bool, ): for i, param in enumerate(params): grad = grads[i] if not maximize else -grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] mu_product = mu_products[i] step_t = state_steps[i]

    if torch.is_complex(param):
        param = torch.view_as_real(param)
        grad = torch.view_as_real(grad)
        exp_avg = torch.view_as_real(exp_avg)
        exp_avg_sq = torch.view_as_real(exp_avg_sq)

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if not torch.compiler.is_compiling() and capturable:
        capturable_supported_devices = _get_capturable_supported_devices()
        assert (
            param.device.type == mu_product.device.type == step_t.device.type
            and param.device.type in capturable_supported_devices
        ), (
            f"If capturable=True, params, mu_products and state_steps must be "
            f"on supported devices: {capturable_supported_devices}."
        )

    # update step
    step_t += 1

    if capturable:
        step = step_t
    else:
        step = _get_value(step_t)

    bias_correction2 = 1 - beta2**step

    if weight_decay != 0:
        if decoupled_weight_decay:
            # Perform stepweight decay
            param.mul_(1 - lr * weight_decay)
        else:
            grad = grad.add(param, alpha=weight_decay)

    # calculate the momentum cache \mu^{t} and \mu^{t+1}
    mu = beta1 * (1.0 - 0.5 * (0.96 ** (step * momentum_decay)))
    mu_next = beta1 * (1.0 - 0.5 * (0.96 ** ((step + 1) * momentum_decay)))

    # update mu_product
    mu_product *= mu

    # decay the first and second moment running average coefficient
    exp_avg.lerp_(grad, 1 - beta1)
    exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
    denom = exp_avg_sq.div(bias_correction2).sqrt()

    if differentiable or capturable:
        denom = denom.add(eps)
        # Make autograd track the operations
        # by updating the grad and exp_avg directly and not using the
        # scalar "value" argument of addcdiv.
        mu_product_next = mu_product * mu_next
        grad = grad * (-lr * (1.0 - mu) / (1.0 - mu_product))
        exp_avg = exp_avg * (-lr * mu_next / (1.0 - mu_product_next))
        param.addcdiv_(grad, denom)
        param.addcdiv_(exp_avg, denom)
    else:
        mu_product_next = _get_value(mu_product) * mu_next
        denom.add_(eps)
        param.addcdiv_(
            grad, denom, value=(-lr * (1.0 - mu) / (1.0 - _get_value(mu_product)))
        )
        param.addcdiv_(
            exp_avg, denom, value=(-lr * mu_next) / (1.0 - mu_product_next)
        )

def _multi_tensor_nadam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], mu_products: list[Tensor], state_steps: list[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, momentum_decay: float, eps: float, decoupled_weight_decay: bool, maximize: bool, capturable: bool, differentiable: bool, has_complex: bool, ): if len(params) == 0: return

assert not differentiable, "_foreach ops don't support autograd"

# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch.compiler.is_compiling() and capturable:
    capturable_supported_devices = _get_capturable_supported_devices(
        supports_xla=False
    )
    assert all(
        p.device.type == mp.device.type == step.device.type
        and p.device.type in capturable_supported_devices
        for p, mp, step in zip(params, mu_products, state_steps)
    ), f"If capturable=True, params, mu_products, and state_steps must be on supported devices: {capturable_supported_devices}."

grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
    [params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps]  # type: ignore[list-item]
)
for (
    grouped_params_,
    grouped_grads_,
    grouped_exp_avgs_,
    grouped_exp_avg_sqs_,
    grouped_mu_products_,
    grouped_state_steps_,
), _ in grouped_tensors.values():
    grouped_params = cast(list[Tensor], grouped_params_)
    grouped_grads = cast(list[Tensor], grouped_grads_)
    grouped_exp_avgs = cast(list[Tensor], grouped_exp_avgs_)
    grouped_exp_avg_sqs = cast(list[Tensor], grouped_exp_avg_sqs_)
    grouped_mu_products = cast(list[Tensor], grouped_mu_products_)
    grouped_state_steps = cast(list[Tensor], grouped_state_steps_)

    # handle complex
    if has_complex:
        _view_as_real(
            grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs
        )

    if maximize:
        grouped_grads = torch._foreach_neg(grouped_grads)  # type: ignore[assignment]

    # Update steps
    # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
    # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
    # wrapped it once now. The alpha is required to assure we go to the right overload.
    if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu:
        torch._foreach_add_(
            grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
        )
    else:
        torch._foreach_add_(grouped_state_steps, 1)

    if weight_decay != 0:
        if decoupled_weight_decay:
            # Perform stepweight decay
            torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
        else:
            # Re-use the intermediate memory (grouped_grads) already allocated for maximize
            if maximize:
                torch._foreach_add_(
                    grouped_grads, grouped_params, alpha=weight_decay
                )
            else:
                grouped_grads = torch._foreach_add(  # type: ignore[assignment]
                    grouped_grads, grouped_params, alpha=weight_decay
                )

    # Decay the first and second moment running average coefficient
    torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)

    torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
    torch._foreach_addcmul_(
        grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2
    )

    exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs)

    bias_correction_sqrt: Union[tuple[Tensor, ...], list[Tensor]]
    mus: Union[tuple[Tensor, ...], list[Tensor]]
    mu_nexts: Union[tuple[Tensor, ...], list[Tensor]]
    if capturable:
        # mus will be beta1 * (1 - 0.5 * 0.96 ** (step * momentum_decay))
        exponent = torch._foreach_mul(grouped_state_steps, momentum_decay)
        mus = torch._foreach_pow(0.96, exponent)
        torch._foreach_mul_(mus, -0.5)
        torch._foreach_add_(mus, 1.0)
        torch._foreach_mul_(mus, beta1)

        # mu_nexts will be beta1 * (1 - 0.5 * 0.96 ** ((step + 1) * momentum_decay))
        torch._foreach_add_(exponent, momentum_decay)
        mu_nexts = torch._foreach_pow(0.96, exponent)
        torch._foreach_mul_(mu_nexts, -0.5)
        torch._foreach_add_(mu_nexts, 1.0)
        torch._foreach_mul_(mu_nexts, beta1)

        # save peak memory as we don't need exponent anymore
        del exponent

        bias_correction_sqrt = torch._foreach_pow(beta2, grouped_state_steps)
        # foreach_sub doesn't allow a scalar as the first arg
        torch._foreach_sub_(bias_correction_sqrt, 1.0)
        torch._foreach_neg_(bias_correction_sqrt)
        torch._foreach_sqrt_(bias_correction_sqrt)
    else:
        bias_correction_sqrt = [
            (1 - beta2 ** _get_value(step)) ** 0.5 for step in grouped_state_steps
        ]
        mus = [
            beta1 * (1.0 - 0.5 * (0.96 ** (_get_value(step) * momentum_decay)))
            for step in grouped_state_steps
        ]
        mu_nexts = [
            beta1
            * (1.0 - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay)))
            for step in grouped_state_steps
        ]

    # update mu_products
    torch._foreach_mul_(grouped_mu_products, mus)

    torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
    torch._foreach_add_(exp_avg_sq_sqrt, eps)

    # explicitly delete bias_correction refs to save memory
    del bias_correction_sqrt

    if capturable:
        # Build up the step_size multiplier for grad, reusing mus' memory
        torch._foreach_sub_(mus, 1.0)
        torch._foreach_mul_(mus, lr)
        # foreach_sub doesn't allow a scalar as the first arg
        denom = torch._foreach_sub(grouped_mu_products, 1.0)
        torch._foreach_neg_(denom)
        torch._foreach_div_(mus, denom)
        # - lr * (1 - mu) / (1 - mu_product)
        step_size_grads = mus
        # explicitly delete denom to save memory
        del denom

        # Build up the step_size multiplier for exp_avg, reusing mu_nexts' memory
        denom = torch._foreach_mul(grouped_mu_products, mu_nexts)
        torch._foreach_mul_(mu_nexts, lr)
        # foreach_sub doesn't allow a scalar as the first arg, but it's okay because
        # we need a negative here anyway
        torch._foreach_sub_(denom, 1.0)
        torch._foreach_div_(mu_nexts, denom)
        # - lr * mu_next / (1 - mu_product * mu_next)
        step_size_expavg = mu_nexts
        # explicitly delete denom to save memory
        del denom

        # we cannot inplace into step_size_grads cuz it is a list of ScalarTensors
        # and mul'ing with grouped_grads will result in a list of bigger Tensors
        numerator = torch._foreach_mul(step_size_grads, grouped_grads)
        torch._foreach_addcmul_(numerator, step_size_expavg, grouped_exp_avgs)

        # finally, update params
        torch._foreach_addcdiv_(grouped_params, numerator, exp_avg_sq_sqrt)
    else:
        step_size_grads = _stack_if_compiling(
            [
                (_get_value(lr) * (1.0 - mu) / (1.0 - _get_value(mu_product))) * -1
                for mu_product, mu in zip(grouped_mu_products, mus)
            ]
        )
        step_size_expavg = _stack_if_compiling(
            [
                (
                    _get_value(lr)
                    * mu_next
                    / (1.0 - _get_value(mu_product) * mu_next)
                )
                * -1
                for mu_product, mu_next in zip(grouped_mu_products, mu_nexts)
            ]
        )

        torch._foreach_addcdiv_(
            grouped_params, grouped_grads, exp_avg_sq_sqrt, step_size_grads  # type: ignore[arg-type]
        )
        torch._foreach_addcdiv_(
            grouped_params, grouped_exp_avgs, exp_avg_sq_sqrt, step_size_expavg  # type: ignore[arg-type]
        )

@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_nadam) def nadam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], mu_products: list[Tensor], state_steps: list[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim decoupled_weight_decay: bool = False, foreach: Optional[bool] = None, capturable: bool = False, differentiable: bool = False, has_complex: bool = False, maximize: bool = False, *, beta1: float, beta2: float, lr: float, weight_decay: float, momentum_decay: float, eps: float, ): r"""Functional API that performs NAdam algorithm computation.

See :class:`~torch.optim.NAdam` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
    raise RuntimeError(
        "API has changed, `state_steps` argument must contain a list of singleton tensors"
    )

if not all(isinstance(t, torch.Tensor) for t in mu_products):
    raise RuntimeError(
        "API has changed, `mu_products` argument must contain a list of singleton tensors"
    )

if foreach is None:
    _, foreach = _default_to_fused_or_foreach(
        params, differentiable, use_fused=False
    )

if foreach and torch.jit.is_scripting():
    raise RuntimeError("torch.jit.script not supported with foreach optimizers")

if foreach and not torch.jit.is_scripting():
    func = _multi_tensor_nadam
else:
    func = _single_tensor_nadam

func(
    params,
    grads,
    exp_avgs,
    exp_avg_sqs,
    mu_products,
    state_steps,
    beta1=beta1,
    beta2=beta2,
    lr=lr,
    weight_decay=weight_decay,
    momentum_decay=momentum_decay,
    maximize=maximize,
    decoupled_weight_decay=decoupled_weight_decay,
    eps=eps,
    capturable=capturable,
    differentiable=differentiable,
    has_complex=has_complex,
)