torch.optim.radam — PyTorch 2.7 documentation (original) (raw)

mypy: allow-untyped-defs

r"""Implementation for the RAdam algorithm.""" from typing import cast, Optional, Union

import torch from torch import Tensor

from .optimizer import ( _capturable_doc, _default_to_fused_or_foreach, _differentiable_doc, _disable_dynamo_if_unsupported, _foreach_doc, _get_capturable_supported_devices, _get_scalar_dtype, _get_value, _maximize_doc, _params_doc, _use_grad_for_differentiable, _view_as_real, Optimizer, ParamsT, )

all = ["RAdam", "radam"]

[docs]class RAdam(Optimizer): # noqa: D101 def init( self, params: ParamsT, lr: Union[float, Tensor] = 1e-3, betas: tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, decoupled_weight_decay: bool = False, *, foreach: Optional[bool] = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, ): # noqa: D107 if isinstance(lr, Tensor) and lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}")

    defaults = dict(
        lr=lr,
        betas=betas,
        eps=eps,
        weight_decay=weight_decay,
        maximize=maximize,
        foreach=foreach,
        capturable=capturable,
        decoupled_weight_decay=decoupled_weight_decay,
        differentiable=differentiable,
    )
    super().__init__(params, defaults)

def __setstate__(self, state):  # noqa: D105
    super().__setstate__(state)
    for group in self.param_groups:
        group.setdefault("foreach", None)
        group.setdefault("maximize", False)
        group.setdefault("differentiable", False)
        group.setdefault("decoupled_weight_decay", False)
        group.setdefault("capturable", False)
        for p in group["params"]:
            p_state = self.state.get(p, [])
            if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
                step_val = float(p_state["step"])
                p_state["step"] = (
                    torch.tensor(
                        step_val, dtype=_get_scalar_dtype(), device=p.device
                    )
                    if group["capturable"]
                    else torch.tensor(step_val, dtype=_get_scalar_dtype())
                )

def _init_group(
    self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
):
    has_complex = False
    for p in group["params"]:
        if p.grad is not None:
            has_complex |= torch.is_complex(p)
            params_with_grad.append(p)
            if p.grad.is_sparse:
                raise RuntimeError("RAdam does not support sparse gradients")
            grads.append(p.grad)

            state = self.state[p]
            # Lazy state initialization
            if len(state) == 0:
                state["step"] = (
                    torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
                    if group["capturable"]
                    else torch.tensor(0.0, dtype=_get_scalar_dtype())
                )
                # Exponential moving average of gradient values
                state["exp_avg"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )
                # Exponential moving average of squared gradient values
                state["exp_avg_sq"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )

            exp_avgs.append(state["exp_avg"])
            exp_avg_sqs.append(state["exp_avg_sq"])
            state_steps.append(state["step"])

    return has_complex

[docs] @_use_grad_for_differentiable def step(self, closure=None): """Perform a single optimization step.

    Args:
        closure (Callable, optional): A closure that reevaluates the model
            and returns the loss.
    """
    self._cuda_graph_capture_health_check()

    loss = None
    if closure is not None:
        with torch.enable_grad():
            loss = closure()

    for group in self.param_groups:
        params_with_grad: list[Tensor] = []
        grads: list[Tensor] = []
        exp_avgs: list[Tensor] = []
        exp_avg_sqs: list[Tensor] = []
        state_steps: list[Tensor] = []
        beta1, beta2 = cast(tuple[float, float], group["betas"])

        has_complex = self._init_group(
            group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
        )

        radam(
            params_with_grad,
            grads,
            exp_avgs,
            exp_avg_sqs,
            state_steps,
            beta1=beta1,
            beta2=beta2,
            lr=group["lr"],
            weight_decay=group["weight_decay"],
            eps=group["eps"],
            maximize=group["maximize"],
            foreach=group["foreach"],
            capturable=group["capturable"],
            differentiable=group["differentiable"],
            decoupled_weight_decay=group["decoupled_weight_decay"],
            has_complex=has_complex,
        )

    return loss

RAdam.doc = ( r"""Implements RAdam algorithm.

.. math::
   \begin{aligned}
        &\rule{110mm}{0.4pt}                                                                 \\
        &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
            \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
            \lambda \text{ (weightdecay)}, \:\textit{maximize}                               \\
        &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
        &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
            v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
        &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
        &\rule{110mm}{0.4pt}  \\
        &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
        &\hspace{6mm}\textbf{if} \: \textit{maximize}:                                       \\
        &\hspace{12mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
        &\hspace{6mm}\textbf{else}                                                           \\
        &\hspace{12mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
        &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
        &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
        &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
        &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
        &\hspace{12mm}\textbf{else}                                                          \\
        &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
        &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
        &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
        &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
        &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
            2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
        &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
        &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
        &\hspace{12mm} r_t \leftarrow
  \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
        &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
        &\hspace{6mm}\textbf{else}                                                           \\
        &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
        &\bf{return} \:  \theta_t                                                     \\[-1.ex]
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
   \end{aligned}

For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

This implementation provides an option to use either the original weight_decay implementation as in Adam
(where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
(default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

"""
+ rf"""
Args:
    {_params_doc}
    lr (float, Tensor, optional): learning rate (default: 1e-3)
    betas (Tuple[float, float], optional): coefficients used for computing
        running averages of gradient and its square (default: (0.9, 0.999))
    eps (float, optional): term added to the denominator to improve
        numerical stability (default: 1e-8)
    weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
    decoupled_weight_decay (bool, optional): whether to decouple the weight
        decay as in AdamW to obtain RAdamW. If True, the algorithm does not
        accumulate weight decay in the momentum nor variance. (default: False)
    {_foreach_doc}
    {_maximize_doc}
    {_capturable_doc}
    {_differentiable_doc}

.. _On the variance of the adaptive learning rate and beyond:
    https://arxiv.org/abs/1908.03265
.. _author's implementation:
    https://github.com/LiyuanLucasLiu/RAdam
.. _Decoupled Weight Decay Regularization:
    https://arxiv.org/abs/1711.05101

"""

)

def _single_tensor_radam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], state_steps: list[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, decoupled_weight_decay: bool, differentiable: bool, maximize: bool, capturable: bool, has_complex: bool, ): for i, param in enumerate(params): grad = grads[i] if not maximize else -grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] step_t = state_steps[i]

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if not torch.compiler.is_compiling() and capturable:
        capturable_supported_devices = _get_capturable_supported_devices()
        assert (
            param.device.type == step_t.device.type
            and param.device.type in capturable_supported_devices
        ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

    if torch.is_complex(param):
        param = torch.view_as_real(param)
        grad = torch.view_as_real(grad)
        exp_avg = torch.view_as_real(exp_avg)
        exp_avg_sq = torch.view_as_real(exp_avg_sq)

    # update step
    step_t += 1
    step = step_t if capturable else _get_value(step_t)

    if weight_decay != 0:
        if decoupled_weight_decay:
            param.mul_(1 - lr * weight_decay)
        else:
            grad = grad.add(param, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    exp_avg.lerp_(grad, 1 - beta1)
    exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

    bias_correction1 = 1 - beta1**step
    bias_correction2 = 1 - beta2**step

    # correcting bias for the first moving moment
    bias_corrected_exp_avg = exp_avg / bias_correction1

    # maximum length of the approximated SMA
    rho_inf = 2 / (1 - beta2) - 1
    # compute the length of the approximated SMA
    rho_t = rho_inf - 2 * step * (beta2**step) / bias_correction2

    def _compute_rect():
        return (
            (rho_t - 4)
            * (rho_t - 2)
            * rho_inf
            / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
        ) ** 0.5

    def _compute_adaptive_lr():
        exp_avg_sq_sqrt = exp_avg_sq.sqrt()
        if differentiable:
            exp_avg_sq_sqrt = exp_avg_sq_sqrt.add(eps)
        else:
            exp_avg_sq_sqrt = exp_avg_sq_sqrt.add_(eps)

        return (bias_correction2**0.5) / exp_avg_sq_sqrt

    # Compute the variance rectification term and update parameters accordingly
    if capturable:
        update = torch.where(
            rho_t > 5.0, _compute_rect() * _compute_adaptive_lr(), 1.0
        )
        param.add_(bias_corrected_exp_avg * lr * update, alpha=-1.0)
    else:
        if rho_t > 5.0:
            param.add_(
                bias_corrected_exp_avg
                * lr
                * _compute_adaptive_lr()
                * _compute_rect(),
                alpha=-1.0,
            )
        else:
            param.add_(bias_corrected_exp_avg * lr, alpha=-1.0)

def _multi_tensor_radam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], state_steps: list[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, decoupled_weight_decay: bool, differentiable: bool, maximize: bool, capturable: bool, has_complex: bool, ): if len(params) == 0: return

assert not differentiable, "_foreach ops don't support autograd"

# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch.compiler.is_compiling() and capturable:
    capturable_supported_devices = _get_capturable_supported_devices(
        supports_xla=False
    )
    assert all(
        p.device.type == step.device.type
        and p.device.type in capturable_supported_devices
        for p, step in zip(params, state_steps)
    ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
    [params, grads, exp_avgs, exp_avg_sqs, state_steps]  # type: ignore[list-item]
)
for (
    grouped_params_,
    grouped_grads_,
    grouped_exp_avgs_,
    grouped_exp_avg_sqs_,
    grouped_state_steps_,
), _ in grouped_tensors.values():
    grouped_params = cast(list[Tensor], grouped_params_)
    grouped_grads = cast(list[Tensor], grouped_grads_)
    grouped_exp_avgs = cast(list[Tensor], grouped_exp_avgs_)
    grouped_exp_avg_sqs = cast(list[Tensor], grouped_exp_avg_sqs_)
    grouped_state_steps = cast(list[Tensor], grouped_state_steps_)

    # Update steps
    # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
    # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
    # wrapped it once now. The alpha is required to assure we go to the right overload.
    if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu:
        torch._foreach_add_(
            grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
        )
    else:
        torch._foreach_add_(grouped_state_steps, 1)

    if has_complex:
        _view_as_real(
            grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs
        )

    if maximize:
        grouped_grads = torch._foreach_neg(grouped_grads)  # type: ignore[assignment]

    # maximum length of the approximated SMA
    rho_inf = 2 / (1 - beta2) - 1
    # compute the length of the approximated SMA
    bias_correction1: Union[tuple[Tensor, ...], list[Tensor]]
    bias_correction2: Union[tuple[Tensor, ...], list[Tensor]]
    rho_t_list: Union[tuple[Tensor, ...], list[Tensor]]
    if capturable:
        bias_correction1 = torch._foreach_pow(beta2, grouped_state_steps)
        torch._foreach_neg_(bias_correction1)
        torch._foreach_add_(bias_correction1, 1)
        bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
        torch._foreach_mul_(bias_correction2, grouped_state_steps)
        torch._foreach_mul_(bias_correction2, 2)
        torch._foreach_div_(bias_correction2, bias_correction1)
        torch._foreach_neg_(bias_correction2)
        torch._foreach_add_(bias_correction2, rho_inf)
        rho_t_list = bias_correction2
    else:
        rho_t_list = [
            rho_inf
            - 2
            * _get_value(step)
            * (beta2 ** _get_value(step))
            / (1 - beta2 ** _get_value(step))
            for step in grouped_state_steps
        ]

    if weight_decay != 0:
        if decoupled_weight_decay:
            torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
        else:
            # Re-use the intermediate memory (grouped_grads) already allocated for maximize
            if maximize:
                torch._foreach_add_(
                    grouped_grads, grouped_params, alpha=weight_decay
                )
            else:
                grouped_grads = torch._foreach_add(  # type: ignore[assignment]
                    grouped_grads, grouped_params, alpha=weight_decay
                )

    # Decay the first and second moment running average coefficient
    torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)

    torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
    torch._foreach_addcmul_(
        grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2
    )

    # Delete the local intermediate since it won't be used anymore to save on peak memory
    del grouped_grads

    if capturable:
        num = torch._foreach_sub(rho_t_list, 4)
        sub2 = torch._foreach_sub(rho_t_list, 2)
        torch._foreach_mul_(num, sub2)
        del sub2
        torch._foreach_mul_(num, rho_inf)
        rho_inf = (rho_inf - 4) * (rho_inf - 2)
        denom = torch._foreach_mul(rho_t_list, rho_inf)
        torch._foreach_div_(num, denom)
        del denom
        torch._foreach_sqrt_(num)

        # TODO(mlazos): we should try and get a foreach_where op https://github.com/pytorch/pytorch/issues/117884
        rect = [
            torch.where(rho_t > 5.0, n, 0.0) for n, rho_t in zip(num, rho_t_list)
        ]
        del num
        del rho_t_list
        unrect_step_size = [torch.where(rect > 0, 0.0, 1.0) for rect in rect]
        torch._foreach_mul_(unrect_step_size, lr)

        bias_correction1 = torch._foreach_pow(beta1, grouped_state_steps)
        torch._foreach_neg_(bias_correction1)
        torch._foreach_add_(bias_correction1, 1)

        torch._foreach_div_(unrect_step_size, bias_correction1)
        torch._foreach_neg_(unrect_step_size)

        bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
        torch._foreach_neg_(bias_correction2)
        torch._foreach_add_(bias_correction2, 1)
        torch._foreach_sqrt_(bias_correction2)
        torch._foreach_mul_(bias_correction2, lr)
        torch._foreach_mul_(bias_correction2, rect)
        del rect
        torch._foreach_neg_(bias_correction2)
        torch._foreach_div_(bias_correction2, bias_correction1)
        del bias_correction1
    else:
        rect = [
            (  # type: ignore[misc]
                (rho_t - 4)  # type: ignore[arg-type]
                * (rho_t - 2)
                * rho_inf
                / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
            )
            ** 0.5
            if rho_t > 5
            else 0
            for rho_t in rho_t_list
        ]
        unrectified = [0 if rect > 0 else 1.0 for rect in rect]

        bias_correction1 = [
            1 - beta1 ** _get_value(step) for step in grouped_state_steps
        ]
        unrect_step_size = [
            (lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)
        ]
        bias_correction2 = [
            ((1 - beta2 ** _get_value(step)) ** 0.5) * (lr * rect / bc) * -1
            for step, rect, bc in zip(grouped_state_steps, rect, bias_correction1)
        ]

    buffer = torch._foreach_sqrt(grouped_exp_avg_sqs)
    torch._foreach_add_(buffer, eps)
    torch._foreach_div_(buffer, bias_correction2)
    torch._foreach_reciprocal_(buffer)
    torch._foreach_add_(buffer, unrect_step_size)

    # Here, buffer = sqrt(1 - beta2^t) * rect_step_size / (sqrt(v) + eps) + unrect_step_size
    torch._foreach_addcmul_(grouped_params, grouped_exp_avgs, buffer)

@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_radam) def radam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], state_steps: list[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim decoupled_weight_decay: bool = False, foreach: Optional[bool] = None, differentiable: bool = False, capturable: bool = False, has_complex: bool = False, maximize: bool = False, *, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, ): r"""Functional API that performs RAdam algorithm computation.

See :class:`~torch.optim.RAdam` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
    raise RuntimeError(
        "API has changed, `state_steps` argument must contain a list of singleton tensors"
    )

if foreach is None:
    _, foreach = _default_to_fused_or_foreach(
        params, differentiable, use_fused=False
    )

if foreach and torch.jit.is_scripting():
    raise RuntimeError("torch.jit.script not supported with foreach optimizers")

if foreach and not torch.jit.is_scripting():
    func = _multi_tensor_radam
else:
    func = _single_tensor_radam

func(
    params,
    grads,
    exp_avgs,
    exp_avg_sqs,
    state_steps,
    beta1=beta1,
    beta2=beta2,
    lr=lr,
    weight_decay=weight_decay,
    eps=eps,
    maximize=maximize,
    decoupled_weight_decay=decoupled_weight_decay,
    differentiable=differentiable,
    capturable=capturable,
    has_complex=has_complex,
)