0: state["momentum_buffer"] = torch.zeros_like( p, memory_format=torch.preserve_format ) if group["centered"]: state["grad_avg"] = torch.zeros_like( p, memory_format=torch.preserve_format ) square_avgs.append(state["square_avg"]) state_steps.append(state["step"]) if group["momentum"] > 0: momentum_buffer_list.append(state["momentum_buffer"]) if group["centered"]: grad_avgs.append(state["grad_avg"]) return has_complex">

torch.optim.rmsprop — PyTorch 2.7 documentation (original) (raw)

mypy: allow-untyped-defs

r"""Implementation for the RMSprop algorithm.""" from typing import cast, Optional, Union

import torch from torch import Tensor

from .optimizer import ( _capturable_doc, _default_to_fused_or_foreach, _differentiable_doc, _disable_dynamo_if_unsupported, _foreach_doc, _get_capturable_supported_devices, _get_scalar_dtype, _maximize_doc, _params_doc, _use_grad_for_differentiable, _view_as_real, Optimizer, ParamsT, )

all = ["RMSprop", "rmsprop"]

[docs]class RMSprop(Optimizer): # noqa: D101 def init( self, params: ParamsT, lr: Union[float, Tensor] = 1e-2, alpha: float = 0.99, eps: float = 1e-8, weight_decay: float = 0, momentum: float = 0, centered: bool = False, capturable: bool = False, foreach: Optional[bool] = None, maximize: bool = False, differentiable: bool = False, ): # noqa: D107 if isinstance(lr, Tensor) and lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= momentum: raise ValueError(f"Invalid momentum value: {momentum}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not 0.0 <= alpha: raise ValueError(f"Invalid alpha value: {alpha}")

    defaults = dict(
        lr=lr,
        momentum=momentum,
        alpha=alpha,
        eps=eps,
        centered=centered,
        weight_decay=weight_decay,
        capturable=capturable,
        foreach=foreach,
        maximize=maximize,
        differentiable=differentiable,
    )
    super().__init__(params, defaults)

def __setstate__(self, state):  # noqa: D105
    super().__setstate__(state)
    for group in self.param_groups:
        group.setdefault("momentum", 0)
        group.setdefault("centered", False)
        group.setdefault("foreach", None)
        group.setdefault("maximize", False)
        group.setdefault("differentiable", False)
        group.setdefault("capturable", False)
        for p in group["params"]:
            p_state = self.state.get(p, [])
            if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
                step_val = float(p_state["step"])
                p_state["step"] = (
                    torch.tensor(
                        step_val, dtype=_get_scalar_dtype(), device=p.device
                    )
                    if group["capturable"]
                    else torch.tensor(step_val, dtype=_get_scalar_dtype())
                )

def _init_group(
    self,
    group,
    params_with_grad,
    grads,
    square_avgs,
    momentum_buffer_list,
    grad_avgs,
    state_steps,
):
    has_complex = False
    for p in group["params"]:
        if p.grad is None:
            continue
        has_complex |= torch.is_complex(p)
        params_with_grad.append(p)

        if p.grad.is_sparse:
            raise RuntimeError("RMSprop does not support sparse gradients")
        grads.append(p.grad)

        state = self.state[p]

        # State initialization
        if len(state) == 0:
            state["step"] = (
                torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
                if group["capturable"]
                else torch.zeros((), dtype=_get_scalar_dtype())
            )
            state["square_avg"] = torch.zeros_like(
                p, memory_format=torch.preserve_format
            )
            if group["momentum"] > 0:
                state["momentum_buffer"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )
            if group["centered"]:
                state["grad_avg"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )
        square_avgs.append(state["square_avg"])
        state_steps.append(state["step"])

        if group["momentum"] > 0:
            momentum_buffer_list.append(state["momentum_buffer"])
        if group["centered"]:
            grad_avgs.append(state["grad_avg"])

    return has_complex

[docs] @_use_grad_for_differentiable def step(self, closure=None): """Perform a single optimization step.

    Args:
        closure (Callable, optional): A closure that reevaluates the model
            and returns the loss.
    """
    self._cuda_graph_capture_health_check()

    loss = None
    if closure is not None:
        with torch.enable_grad():
            loss = closure()

    for group in self.param_groups:
        params_with_grad: list[Tensor] = []
        grads: list[Tensor] = []
        square_avgs: list[Tensor] = []
        grad_avgs: list[Tensor] = []
        momentum_buffer_list: list[Tensor] = []
        state_steps: list[Tensor] = []

        has_complex = self._init_group(
            group,
            params_with_grad,
            grads,
            square_avgs,
            momentum_buffer_list,
            grad_avgs,
            state_steps,
        )

        rmsprop(
            params_with_grad,
            grads,
            square_avgs,
            grad_avgs,
            momentum_buffer_list,
            state_steps,
            lr=group["lr"],
            alpha=group["alpha"],
            eps=group["eps"],
            weight_decay=group["weight_decay"],
            momentum=group["momentum"],
            centered=group["centered"],
            foreach=group["foreach"],
            maximize=group["maximize"],
            differentiable=group["differentiable"],
            capturable=group["capturable"],
            has_complex=has_complex,
        )

    return loss

RMSprop.doc = ( r"""Implements RMSprop algorithm.

.. math::
   \begin{aligned}
        &\rule{110mm}{0.4pt}                                                                 \\
        &\textbf{input}      : \alpha \text{ (alpha)}, \: \gamma \text{ (lr)},
            \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}                   \\
        &\hspace{13mm}   \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},
            \: centered, \: \epsilon \text{ (epsilon)}                                       \\
        &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \:
            \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0     \\[-1.ex]
        &\rule{110mm}{0.4pt}                                                                 \\
        &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
        &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
        &\hspace{5mm}if \: \lambda \neq 0                                                    \\
        &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
        &\hspace{5mm}v_t           \leftarrow   \alpha v_{t-1} + (1 - \alpha) g^2_t
            \hspace{8mm}                                                                     \\
        &\hspace{5mm} \tilde{v_t} \leftarrow v_t                                             \\
        &\hspace{5mm}if \: centered                                                          \\
        &\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t            \\
        &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} -  \big(g^{ave}_{t} \big)^2        \\
        &\hspace{5mm}if \: \mu > 0                                                           \\
        &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} +
            g_t/ \big(\sqrt{\tilde{v_t}} +  \epsilon \big)                                   \\
        &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t                \\
        &\hspace{5mm} else                                                                   \\
        &\hspace{10mm}\theta_t      \leftarrow   \theta_{t-1} -
            \gamma  g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big)  \hspace{3mm}              \\
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
        &\bf{return} \:  \theta_t                                                     \\[-1.ex]
        &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
   \end{aligned}

For further details regarding the algorithm we refer to
`lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton.
and centered version `Generating Sequences
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
The implementation here takes the square root of the gradient average before
adding epsilon (note that TensorFlow interchanges these two operations). The effective
learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma`
is the scheduled learning rate and :math:`v` is the weighted moving average
of the squared gradient.
"""
+ rf"""
Args:
    {_params_doc}
    lr (float, Tensor, optional): learning rate (default: 1e-2)
    alpha (float, optional): smoothing constant (default: 0.99)
    eps (float, optional): term added to the denominator to improve
        numerical stability (default: 1e-8)
    weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
    momentum (float, optional): momentum factor (default: 0)
    centered (bool, optional) : if ``True``, compute the centered RMSProp,
        the gradient is normalized by an estimation of its variance
    {_capturable_doc}
    {_foreach_doc}
    {_maximize_doc}
    {_differentiable_doc}

"""

)

def _single_tensor_rmsprop( params: list[Tensor], grads: list[Tensor], square_avgs: list[Tensor], grad_avgs: list[Tensor], momentum_buffer_list: list[Tensor], state_steps: list[Tensor], *, lr: float, alpha: float, eps: float, weight_decay: float, momentum: float, centered: bool, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): for i, param in enumerate(params): step = state_steps[i]

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if not torch.compiler.is_compiling() and capturable:
        capturable_supported_devices = _get_capturable_supported_devices()
        assert (
            param.device.type == step.device.type
            and param.device.type in capturable_supported_devices
        ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

    grad = grads[i]
    grad = grad if not maximize else -grad
    square_avg = square_avgs[i]

    step += 1

    if weight_decay != 0:
        grad = grad.add(param, alpha=weight_decay)

    is_complex_param = torch.is_complex(param)
    if is_complex_param:
        param = torch.view_as_real(param)
        grad = torch.view_as_real(grad)
        square_avg = torch.view_as_real(square_avg)

    square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha)

    if centered:
        grad_avg = grad_avgs[i]
        if is_complex_param:
            grad_avg = torch.view_as_real(grad_avg)
        grad_avg.lerp_(grad, 1 - alpha)
        avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_()
    else:
        avg = square_avg.sqrt()

    if differentiable:
        avg = avg.add(eps)
    else:
        avg = avg.add_(eps)

    if momentum > 0:
        buf = momentum_buffer_list[i]
        if is_complex_param:
            buf = torch.view_as_real(buf)
        buf.mul_(momentum).addcdiv_(grad, avg)
        param.add_(buf, alpha=-lr)
    else:
        param.addcdiv_(grad, avg, value=-lr)

def _multi_tensor_rmsprop( params: list[Tensor], grads: list[Tensor], square_avgs: list[Tensor], grad_avgs: list[Tensor], momentum_buffer_list: list[Tensor], state_steps: list[Tensor], *, lr: float, alpha: float, eps: float, weight_decay: float, momentum: float, centered: bool, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): if len(params) == 0: return

assert not differentiable, "_foreach ops don't support autograd"

# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch.compiler.is_compiling() and capturable:
    capturable_supported_devices = _get_capturable_supported_devices()
    assert all(
        p.device.type == step.device.type
        and p.device.type in capturable_supported_devices
        for p, step in zip(params, state_steps)
    ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
    [params, grads, square_avgs, grad_avgs, momentum_buffer_list, state_steps]  # type: ignore[list-item]
)
for (
    (
        grouped_params_,
        grouped_grads_,
        grouped_square_avgs_,
        grouped_grad_avgs_,
        grouped_momentum_buffer_list_,
        grouped_state_steps_,
    )
), _ in grouped_tensors.values():
    grouped_params = cast(list[Tensor], grouped_params_)
    grouped_grads = cast(list[Tensor], grouped_grads_)
    grouped_square_avgs = cast(list[Tensor], grouped_square_avgs_)
    grouped_state_steps = cast(list[Tensor], grouped_state_steps_)

    if has_complex:
        state_and_grads = [grouped_grads, grouped_square_avgs]
        if momentum > 0:
            grouped_momentum_buffer_list = cast(
                list[Tensor], grouped_momentum_buffer_list_
            )
            state_and_grads.append(grouped_momentum_buffer_list)
        if centered:
            grouped_grad_avgs = cast(list[Tensor], grouped_grad_avgs_)
            state_and_grads.append(grouped_grad_avgs)
        _view_as_real(grouped_params, *state_and_grads)

    if maximize:
        grouped_grads = torch._foreach_neg(grouped_grads)  # type: ignore[assignment]

    # Update steps
    # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
    # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
    # wrapped it once now. The alpha is required to assure we go to the right overload.
    if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu:
        torch._foreach_add_(
            grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
        )
    else:
        torch._foreach_add_(grouped_state_steps, 1)

    if weight_decay != 0:
        # Re-use the intermediate memory (grouped_grads) already allocated for maximize
        if maximize:
            torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay)
        else:
            grouped_grads = torch._foreach_add(  # type: ignore[assignment]
                grouped_grads, grouped_params, alpha=weight_decay
            )

    torch._foreach_mul_(grouped_square_avgs, alpha)
    torch._foreach_addcmul_(
        grouped_square_avgs, grouped_grads, grouped_grads, value=1 - alpha
    )

    if centered:
        grouped_grad_avgs = cast(list[Tensor], grouped_grad_avgs_)
        torch._foreach_lerp_(grouped_grad_avgs, grouped_grads, 1 - alpha)
        avg = torch._foreach_addcmul(
            grouped_square_avgs, grouped_grad_avgs, grouped_grad_avgs, value=-1
        )
        torch._foreach_sqrt_(avg)
        torch._foreach_add_(avg, eps)
    else:
        avg = torch._foreach_sqrt(grouped_square_avgs)
        torch._foreach_add_(avg, eps)

    if momentum > 0:
        grouped_momentum_buffer_list = cast(
            list[Tensor], grouped_momentum_buffer_list_
        )
        torch._foreach_mul_(grouped_momentum_buffer_list, momentum)
        torch._foreach_addcdiv_(grouped_momentum_buffer_list, grouped_grads, avg)
        # If LR is a tensor, the else branch will internally call item()
        # which will cause silent incorrectness if we are capturing
        if capturable and isinstance(lr, torch.Tensor):
            momentum_lr = torch._foreach_mul(grouped_momentum_buffer_list, -lr)
            torch._foreach_add_(grouped_params, momentum_lr)
        else:
            torch._foreach_add_(
                grouped_params, grouped_momentum_buffer_list, alpha=-lr
            )
    else:
        # If LR is a tensor, the else branch will internally call item()
        # which will cause silent incorrectness if we are capturing
        if capturable and isinstance(lr, torch.Tensor):
            torch._foreach_div_(avg, -lr)
            torch._foreach_addcdiv_(grouped_params, grouped_grads, avg)
        else:
            torch._foreach_addcdiv_(grouped_params, grouped_grads, avg, value=-lr)

@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_rmsprop) def rmsprop( params: list[Tensor], grads: list[Tensor], square_avgs: list[Tensor], grad_avgs: list[Tensor], momentum_buffer_list: list[Tensor], state_steps: list[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim foreach: Optional[bool] = None, maximize: bool = False, differentiable: bool = False, capturable: bool = False, has_complex: bool = False, *, lr: float, alpha: float, eps: float, weight_decay: float, momentum: float, centered: bool, ): r"""Functional API that performs rmsprop algorithm computation.

See :class:`~torch.optim.RMSProp` for details.
"""
# this check is slow during compilation, so we skip it
# if it's strictly needed we can add this check back in dynamo
if not torch.compiler.is_compiling() and not all(
    isinstance(t, torch.Tensor) for t in state_steps
):
    raise RuntimeError(
        "API has changed, `state_steps` argument must contain a list of singleton tensors"
    )

if foreach is None:
    _, foreach = _default_to_fused_or_foreach(
        params, differentiable, use_fused=False
    )

if foreach and torch.jit.is_scripting():
    raise RuntimeError("torch.jit.script not supported with foreach optimizers")

if foreach and not torch.jit.is_scripting():
    func = _multi_tensor_rmsprop
else:
    func = _single_tensor_rmsprop

func(
    params,
    grads,
    square_avgs,
    grad_avgs,
    momentum_buffer_list,
    state_steps,
    lr=lr,
    alpha=alpha,
    eps=eps,
    weight_decay=weight_decay,
    momentum=momentum,
    centered=centered,
    maximize=maximize,
    capturable=capturable,
    differentiable=differentiable,
    has_complex=has_complex,
)