Probability distributions - torch.distributions — PyTorch 2.7 documentation (original) (raw)
The distributions
package contains parameterizable probability distributions and sampling functions. This allows the construction of stochastic computation graphs and stochastic gradient estimators for optimization. This package generally follows the design of the TensorFlow Distributions package.
It is not possible to directly backpropagate through random samples. However, there are two main methods for creating surrogate functions that can be backpropagated through. These are the score function estimator/likelihood ratio estimator/REINFORCE and the pathwise derivative estimator. REINFORCE is commonly seen as the basis for policy gradient methods in reinforcement learning, and the pathwise derivative estimator is commonly seen in the reparameterization trick in variational autoencoders. Whilst the score function only requires the value of samples f(x)f(x), the pathwise derivative requires the derivativef′(x)f'(x). The next sections discuss these two in a reinforcement learning example. For more details seeGradient Estimation Using Stochastic Computation Graphs .
Score function¶
When the probability density function is differentiable with respect to its parameters, we only need sample()
andlog_prob()
to implement REINFORCE:
Δθ=αr∂logp(a∣πθ(s))∂θ\Delta\theta = \alpha r \frac{\partial\log p(a|\pi^\theta(s))}{\partial\theta}
where θ\theta are the parameters, α\alpha is the learning rate,rr is the reward and p(a∣πθ(s))p(a|\pi^\theta(s)) is the probability of taking action aa in state ss given policy πθ\pi^\theta.
In practice we would sample an action from the output of a network, apply this action in an environment, and then use log_prob
to construct an equivalent loss function. Note that we use a negative because optimizers use gradient descent, whilst the rule above assumes gradient ascent. With a categorical policy, the code for implementing REINFORCE would be as follows:
probs = policy_network(state)
Note that this is equivalent to what used to be called multinomial
m = Categorical(probs) action = m.sample() next_state, reward = env.step(action) loss = -m.log_prob(action) * reward loss.backward()
Pathwise derivative¶
The other way to implement these stochastic/policy gradients would be to use the reparameterization trick from thersample()
method, where the parameterized random variable can be constructed via a parameterized deterministic function of a parameter-free random variable. The reparameterized sample therefore becomes differentiable. The code for implementing the pathwise derivative would be as follows:
params = policy_network(state) m = Normal(*params)
Any distribution with .has_rsample == True could work based on the application
action = m.rsample() next_state, reward = env.step(action) # Assuming that reward is differentiable loss = -reward loss.backward()
Distribution¶
class torch.distributions.distribution.Distribution(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)[source][source]¶
Bases: object
Distribution is the abstract base class for probability distributions.
property arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_¶
Returns a dictionary from argument names toConstraint objects that should be satisfied by each argument of this distribution. Args that are not tensors need not appear in this dict.
Returns the shape over which parameters are batched.
Returns the cumulative density/mass function evaluated atvalue.
Parameters
value (Tensor) –
Return type
Returns entropy of distribution, batched over batch_shape.
Returns
Tensor of shape batch_shape.
Return type
enumerate_support(expand=True)[source][source]¶
Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be (cardinality,) + batch_shape + event_shape(where event_shape = () for univariate distributions).
Note that this enumerates over all batched tensors in lock-step[[0, 0], [1, 1], …]. With expand=False, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions, [[0], [1], ...
To iterate over the full Cartesian product useitertools.product(m.enumerate_support()).
Parameters
expand (bool) – whether to expand the support over the batch dims to match the distribution’s batch_shape.
Returns
Tensor iterating over dimension 0.
Return type
Returns the shape of a single sample (without batching).
expand(batch_shape, _instance=None)[source][source]¶
Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded tobatch_shape. This method calls expand on the distribution’s parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in__init__.py, when an instance is first created.
Parameters
- batch_shape (torch.Size) – the desired expanded size.
- _instance – new instance provided by subclasses that need to override .expand.
Returns
New distribution instance with batch dimensions expanded tobatch_size.
Returns the inverse cumulative density/mass function evaluated atvalue.
Parameters
value (Tensor) –
Return type
log_prob(value)[source][source]¶
Returns the log of the probability density/mass function evaluated atvalue.
Parameters
value (Tensor) –
Return type
Returns the mean of the distribution.
Returns the mode of the distribution.
Returns perplexity of distribution, batched over batch_shape.
Returns
Tensor of shape batch_shape.
Return type
rsample(sample_shape=torch.Size([]))[source][source]¶
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched.
Return type
sample(sample_shape=torch.Size([]))[source][source]¶
Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched.
Return type
Generates n samples or n batches of samples if the distribution parameters are batched.
Return type
static set_default_validate_args(value)[source][source]¶
Sets whether validation is enabled or disabled.
The default behavior mimics Python’s assert
statement: validation is on by default, but is disabled if Python is run in optimized mode (via python -O
). Validation may be expensive, so you may want to disable it once a model is working.
Parameters
value (bool) – Whether to enable validation.
Returns the standard deviation of the distribution.
property support_: Optional[Constraint]_¶
Returns a Constraint object representing this distribution’s support.
Returns the variance of the distribution.
ExponentialFamily¶
class torch.distributions.exp_family.ExponentialFamily(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)[source][source]¶
Bases: Distribution
ExponentialFamily is the abstract base class for probability distributions belonging to an exponential family, whose probability mass/density function has the form is defined below
pF(x;θ)=exp(⟨t(x),θ⟩−F(θ)+k(x))p_{F}(x; \theta) = \exp(\langle t(x), \theta\rangle - F(\theta) + k(x))
where θ\theta denotes the natural parameters, t(x)t(x) denotes the sufficient statistic,F(θ)F(\theta) is the log normalizer function for a given family and k(x)k(x) is the carrier measure.
Note
This class is an intermediary between the Distribution class and distributions which belong to an exponential family mainly to check the correctness of the .entropy() and analytic KL divergence methods. We use this class to compute the entropy and KL divergence using the AD framework and Bregman divergences (courtesy of: Frank Nielsen and Richard Nock, Entropies and Cross-entropies of Exponential Families).
Method to compute the entropy using Bregman divergence of the log normalizer.
Bernoulli¶
class torch.distributions.bernoulli.Bernoulli(probs=None, logits=None, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a Bernoulli distribution parameterized by probsor logits (but not both).
Samples are binary (0 or 1). They take the value 1 with probability pand 0 with probability 1 - p.
Example:
m = Bernoulli(torch.tensor([0.3])) m.sample() # 30% chance 1; 70% chance 0 tensor([ 0.])
Parameters
- probs (Number , Tensor) – the probability of sampling 1
- logits (Number , Tensor) – the log-odds of sampling 1
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}¶
enumerate_support(expand=True)[source][source]¶
expand(batch_shape, _instance=None)[source][source]¶
has_enumerate_support = True¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
support = Boolean()¶
Beta¶
class torch.distributions.beta.Beta(concentration1, concentration0, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Beta distribution parameterized by concentration1 and concentration0.
Example:
m = Beta(torch.tensor([0.5]), torch.tensor([0.5])) m.sample() # Beta distributed with concentration concentration1 and concentration0 tensor([ 0.1046])
Parameters
- concentration1 (float or Tensor) – 1st concentration parameter of the distribution (often referred to as alpha)
- concentration0 (float or Tensor) – 2nd concentration parameter of the distribution (often referred to as beta)
arg_constraints = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)}¶
property concentration0_: Tensor_¶
property concentration1_: Tensor_¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=())[source][source]¶
Return type
support = Interval(lower_bound=0.0, upper_bound=1.0)¶
Binomial¶
class torch.distributions.binomial.Binomial(total_count=1, probs=None, logits=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a Binomial distribution parameterized by total_count
and either probs or logits (but not both). total_count
must be broadcastable with probs/logits.
Example:
m = Binomial(100, torch.tensor([0 , .2, .8, 1])) x = m.sample() tensor([ 0., 22., 71., 100.])
m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8])) x = m.sample() tensor([[ 4., 5.], [ 7., 6.]])
Parameters
- total_count (int or Tensor) – number of Bernoulli trials
- probs (Tensor) – Event probabilities
- logits (Tensor) – Event log-odds
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0), 'total_count': IntegerGreaterThan(lower_bound=0)}¶
enumerate_support(expand=True)[source][source]¶
expand(batch_shape, _instance=None)[source][source]¶
has_enumerate_support = True¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
property support¶
Return type
_DependentProperty
Categorical¶
class torch.distributions.categorical.Categorical(probs=None, logits=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a categorical distribution parameterized by either probs orlogits (but not both).
Samples are integers from {0,…,K−1}\{0, \ldots, K-1\} where K is probs.size(-1)
.
If probs is 1-dimensional with length-K, each element is the relative probability of sampling the class at that index.
If probs is N-dimensional, the first N-1 dimensions are treated as a batch of relative probability vectors.
Note
The probs argument must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1 along the last dimension. probswill return this normalized value. The logits argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. logitswill return this normalized value.
See also: torch.multinomial()
Example:
m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) m.sample() # equal probability of 0, 1, 2, 3 tensor(3)
Parameters
arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}¶
enumerate_support(expand=True)[source][source]¶
expand(batch_shape, _instance=None)[source][source]¶
has_enumerate_support = True¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
property support¶
Return type
_DependentProperty
Cauchy¶
class torch.distributions.cauchy.Cauchy(loc, scale, validate_args=None)[source][source]¶
Bases: Distribution
Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of independent normally distributed random variables with means 0 follows a Cauchy distribution.
Example:
m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 tensor([ 2.3214])
Parameters
- loc (float or Tensor) – mode or median of the distribution.
- scale (float or Tensor) – half width at half maximum.
arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
support = Real()¶
Chi2¶
class torch.distributions.chi2.Chi2(df, validate_args=None)[source][source]¶
Bases: Gamma
Creates a Chi-squared distribution parameterized by shape parameter df. This is exactly equivalent to Gamma(alpha=0.5*df, beta=0.5)
Example:
m = Chi2(torch.tensor([1.0])) m.sample() # Chi2 distributed with shape df=1 tensor([ 0.1046])
Parameters
df (float or Tensor) – shape parameter of the distribution
arg_constraints = {'df': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
ContinuousBernoulli¶
class torch.distributions.continuous_bernoulli.ContinuousBernoulli(probs=None, logits=None, lims=(0.499, 0.501), validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a continuous Bernoulli distribution parameterized by probsor logits (but not both).
The distribution is supported in [0, 1] and parameterized by ‘probs’ (in (0,1)) or ‘logits’ (real-valued). Note that, unlike the Bernoulli, ‘probs’ does not correspond to a probability and ‘logits’ does not correspond to log-odds, but the same names are used due to the similarity with the Bernoulli. See [1] for more details.
Example:
m = ContinuousBernoulli(torch.tensor([0.3])) m.sample() tensor([ 0.2538])
Parameters
- probs (Number , Tensor) – (0,1) valued parameters
- logits (Number , Tensor) – real valued parameters whose sigmoid matches ‘probs’
[1] The continuous Bernoulli: fixing a pervasive error in variational autoencoders, Loaiza-Ganem G and Cunningham JP, NeurIPS 2019.https://arxiv.org/abs/1907.06845
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
sample(sample_shape=torch.Size([]))[source][source]¶
support = Interval(lower_bound=0.0, upper_bound=1.0)¶
Dirichlet¶
class torch.distributions.dirichlet.Dirichlet(concentration, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a Dirichlet distribution parameterized by concentration concentration
.
Example:
m = Dirichlet(torch.tensor([0.5, 0.5])) m.sample() # Dirichlet distributed with concentration [0.5, 0.5] tensor([ 0.1046, 0.8954])
Parameters
concentration (Tensor) – concentration parameter of the distribution (often referred to as alpha)
arg_constraints = {'concentration': IndependentConstraint(GreaterThan(lower_bound=0.0), 1)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=())[source][source]¶
Return type
support = Simplex()¶
Exponential¶
class torch.distributions.exponential.Exponential(rate, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a Exponential distribution parameterized by rate
.
Example:
m = Exponential(torch.tensor([1.0])) m.sample() # Exponential distributed with rate=1 tensor([ 0.1046])
Parameters
rate (float or Tensor) – rate = 1 / scale of the distribution
arg_constraints = {'rate': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
support = GreaterThanEq(lower_bound=0.0)¶
FisherSnedecor¶
class torch.distributions.fishersnedecor.FisherSnedecor(df1, df2, validate_args=None)[source][source]¶
Bases: Distribution
Creates a Fisher-Snedecor distribution parameterized by df1
and df2
.
Example:
m = FisherSnedecor(torch.tensor([1.0]), torch.tensor([2.0])) m.sample() # Fisher-Snedecor-distributed with df1=1 and df2=2 tensor([ 0.2453])
Parameters
- df1 (float or Tensor) – degrees of freedom parameter 1
- df2 (float or Tensor) – degrees of freedom parameter 2
arg_constraints = {'df1': GreaterThan(lower_bound=0.0), 'df2': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
support = GreaterThan(lower_bound=0.0)¶
Gamma¶
class torch.distributions.gamma.Gamma(concentration, rate, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a Gamma distribution parameterized by shape concentration
and rate
.
Example:
m = Gamma(torch.tensor([1.0]), torch.tensor([1.0])) m.sample() # Gamma distributed with concentration=1 and rate=1 tensor([ 0.1046])
Parameters
- concentration (float or Tensor) – shape parameter of the distribution (often referred to as alpha)
- rate (float or Tensor) – rate parameter of the distribution (often referred to as beta), rate = 1 / scale
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
support = GreaterThanEq(lower_bound=0.0)¶
Geometric¶
class torch.distributions.geometric.Geometric(probs=None, logits=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a Geometric distribution parameterized by probs, where probs is the probability of success of Bernoulli trials.
P(X=k)=(1−p)kp,k=0,1,...P(X=k) = (1-p)^{k} p, k = 0, 1, ...
Note
torch.distributions.geometric.Geometric() (k+1)(k+1)-th trial is the first success hence draws samples in {0,1,…}\{0, 1, \ldots\}, whereastorch.Tensor.geometric_() k-th trial is the first success hence draws samples in {1,2,…}\{1, 2, \ldots\}.
Example:
m = Geometric(torch.tensor([0.3])) m.sample() # underlying Bernoulli has 30% chance 1; 70% chance 0 tensor([ 2.])
Parameters
- probs (Number , Tensor) – the probability of sampling 1. Must be in range (0, 1]
- logits (Number , Tensor) – the log-odds of sampling 1.
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
support = IntegerGreaterThan(lower_bound=0)¶
Gumbel¶
class torch.distributions.gumbel.Gumbel(loc, scale, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Samples from a Gumbel Distribution.
Examples:
m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) m.sample() # sample from Gumbel distribution with loc=1, scale=2 tensor([ 1.0124])
Parameters
- loc (float or Tensor) – Location parameter of the distribution
- scale (float or Tensor) – Scale parameter of the distribution
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
log_prob(value)[source][source]¶
support = Real()¶
HalfCauchy¶
class torch.distributions.half_cauchy.HalfCauchy(scale, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Creates a half-Cauchy distribution parameterized by scale where:
X ~ Cauchy(0, scale) Y = |X| ~ HalfCauchy(scale)
Example:
m = HalfCauchy(torch.tensor([1.0])) m.sample() # half-cauchy distributed with scale=1 tensor([ 2.3214])
Parameters
scale (float or Tensor) – scale of the full Cauchy distribution
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
support = GreaterThanEq(lower_bound=0.0)¶
HalfNormal¶
class torch.distributions.half_normal.HalfNormal(scale, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Creates a half-normal distribution parameterized by scale where:
X ~ Normal(0, scale) Y = |X| ~ HalfNormal(scale)
Example:
m = HalfNormal(torch.tensor([1.0])) m.sample() # half-normal distributed with scale=1 tensor([ 0.1046])
Parameters
scale (float or Tensor) – scale of the full Normal distribution
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
support = GreaterThanEq(lower_bound=0.0)¶
Independent¶
class torch.distributions.independent.Independent(base_distribution, reinterpreted_batch_ndims, validate_args=None)[source][source]¶
Bases: Distribution
Reinterprets some of the batch dims of a distribution as event dims.
This is mainly useful for changing the shape of the result oflog_prob(). For example to create a diagonal Normal distribution with the same shape as a Multivariate Normal distribution (so they are interchangeable), you can:
from torch.distributions.multivariate_normal import MultivariateNormal from torch.distributions.normal import Normal loc = torch.zeros(3) scale = torch.ones(3) mvn = MultivariateNormal(loc, scale_tril=torch.diag(scale)) [mvn.batch_shape, mvn.event_shape] [torch.Size([]), torch.Size([3])] normal = Normal(loc, scale) [normal.batch_shape, normal.event_shape] [torch.Size([3]), torch.Size([])] diagn = Independent(normal, 1) [diagn.batch_shape, diagn.event_shape] [torch.Size([]), torch.Size([3])]
Parameters
- base_distribution (torch.distributions.distribution.Distribution) – a base distribution
- reinterpreted_batch_ndims (int) – the number of batch dims to reinterpret as event dims
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {}¶
enumerate_support(expand=True)[source][source]¶
expand(batch_shape, _instance=None)[source][source]¶
property has_enumerate_support_: bool_¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
sample(sample_shape=torch.Size([]))[source][source]¶
Return type
property support¶
Return type
_DependentProperty
InverseGamma¶
class torch.distributions.inverse_gamma.InverseGamma(concentration, rate, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Creates an inverse gamma distribution parameterized by concentration and ratewhere:
X ~ Gamma(concentration, rate) Y = 1 / X ~ InverseGamma(concentration, rate)
Example:
m = InverseGamma(torch.tensor([2.0]), torch.tensor([3.0])) m.sample() tensor([ 1.2953])
Parameters
- concentration (float or Tensor) – shape parameter of the distribution (often referred to as alpha)
- rate (float or Tensor) – rate = 1 / scale of the distribution (often referred to as beta)
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)}¶
property concentration_: Tensor_¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
support = GreaterThan(lower_bound=0.0)¶
Kumaraswamy¶
class torch.distributions.kumaraswamy.Kumaraswamy(concentration1, concentration0, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Samples from a Kumaraswamy distribution.
Example:
m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0])) m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1 tensor([ 0.1729])
Parameters
- concentration1 (float or Tensor) – 1st concentration parameter of the distribution (often referred to as alpha)
- concentration0 (float or Tensor) – 2nd concentration parameter of the distribution (often referred to as beta)
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
support = Interval(lower_bound=0.0, upper_bound=1.0)¶
LKJCholesky¶
class torch.distributions.lkj_cholesky.LKJCholesky(dim, concentration=1.0, validate_args=None)[source][source]¶
Bases: Distribution
LKJ distribution for lower Cholesky factor of correlation matrices. The distribution is controlled by concentration
parameter η\etato make the probability of the correlation matrix MM generated from a Cholesky factor proportional to det(M)η−1\det(M)^{\eta - 1}. Because of that, when concentration == 1
, we have a uniform distribution over Cholesky factors of correlation matrices:
L ~ LKJCholesky(dim, concentration) X = L @ L' ~ LKJCorr(dim, concentration)
Note that this distribution samples the Cholesky factor of correlation matrices and not the correlation matrices themselves and thereby differs slightly from the derivations in [1] for the LKJCorr distribution. For sampling, this uses the Onion method from [1] Section 3.
Example:
l = LKJCholesky(3, 0.5) l.sample() # l @ l.T is a sample of a correlation 3x3 matrix tensor([[ 1.0000, 0.0000, 0.0000], [ 0.3516, 0.9361, 0.0000], [-0.1899, 0.4748, 0.8593]])
Parameters
- dimension (dim) – dimension of the matrices
- concentration (float or Tensor) – concentration/shape parameter of the distribution (often referred to as eta)
References
[1] Generating random correlation matrices based on vines and extended onion method (2009), Daniel Lewandowski, Dorota Kurowicka, Harry Joe. Journal of Multivariate Analysis. 100. 10.1016/j.jmva.2009.04.008
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
support = CorrCholesky()¶
Laplace¶
class torch.distributions.laplace.Laplace(loc, scale, validate_args=None)[source][source]¶
Bases: Distribution
Creates a Laplace distribution parameterized by loc
and scale
.
Example:
m = Laplace(torch.tensor([0.0]), torch.tensor([1.0])) m.sample() # Laplace distributed with loc=0, scale=1 tensor([ 0.1046])
Parameters
- loc (float or Tensor) – mean of the distribution
- scale (float or Tensor) – scale of the distribution
arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
support = Real()¶
LogNormal¶
class torch.distributions.log_normal.LogNormal(loc, scale, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Creates a log-normal distribution parameterized byloc and scale where:
X ~ Normal(loc, scale) Y = exp(X) ~ LogNormal(loc, scale)
Example:
m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0])) m.sample() # log-normal distributed with mean=0 and stddev=1 tensor([ 0.1046])
Parameters
- loc (float or Tensor) – mean of log of distribution
- scale (float or Tensor) – standard deviation of log of the distribution
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
support = GreaterThan(lower_bound=0.0)¶
LowRankMultivariateNormal¶
class torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal(loc, cov_factor, cov_diag, validate_args=None)[source][source]¶
Bases: Distribution
Creates a multivariate normal distribution with covariance matrix having a low-rank form parameterized by cov_factor
and cov_diag
:
covariance_matrix = cov_factor @ cov_factor.T + cov_diag
Example
m = LowRankMultivariateNormal( ... torch.zeros(2), torch.tensor([[1.0], [0.0]]), torch.ones(2) ... ) m.sample() # normally distributed with mean=
[0,0]
, cov_factor=[[1],[0]]
, cov_diag=[1,1]
tensor([-0.2102, -0.5429])
Parameters
- loc (Tensor) – mean of the distribution with shape batch_shape + event_shape
- cov_factor (Tensor) – factor part of low-rank form of covariance matrix with shapebatch_shape + event_shape + (rank,)
- cov_diag (Tensor) – diagonal part of low-rank form of covariance matrix with shapebatch_shape + event_shape
Note
The computation for determinant and inverse of covariance matrix is avoided whencov_factor.shape[1] << cov_factor.shape[0] thanks to Woodbury matrix identity andmatrix determinant lemma. Thanks to these formulas, we just need to compute the determinant and inverse of the small size “capacitance” matrix:
capacitance = I + cov_factor.T @ inv(cov_diag) @ cov_factor
arg_constraints = {'cov_diag': IndependentConstraint(GreaterThan(lower_bound=0.0), 1), 'cov_factor': IndependentConstraint(Real(), 2), 'loc': IndependentConstraint(Real(), 1)}¶
property covariance_matrix_: Tensor_¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
property precision_matrix_: Tensor_¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
property scale_tril_: Tensor_¶
support = IndependentConstraint(Real(), 1)¶
MixtureSameFamily¶
class torch.distributions.mixture_same_family.MixtureSameFamily(mixture_distribution, component_distribution, validate_args=None)[source][source]¶
Bases: Distribution
The MixtureSameFamily distribution implements a (batch of) mixture distribution where all component are from different parameterizations of the same distribution type. It is parameterized by a Categorical“selecting distribution” (over k component) and a component distribution, i.e., a Distribution with a rightmost batch shape (equal to [k]) which indexes each (batch of) component.
Examples:
Construct Gaussian Mixture Model in 1D consisting of 5 equally
weighted normal distributions
mix = D.Categorical(torch.ones(5,)) comp = D.Normal(torch.randn(5,), torch.rand(5,)) gmm = MixtureSameFamily(mix, comp)
Construct Gaussian Mixture Model in 2D consisting of 5 equally
weighted bivariate normal distributions
mix = D.Categorical(torch.ones(5,)) comp = D.Independent(D.Normal( ... torch.randn(5,2), torch.rand(5,2)), 1) gmm = MixtureSameFamily(mix, comp)
Construct a batch of 3 Gaussian Mixture Models in 2D each
consisting of 5 random weighted bivariate normal distributions
mix = D.Categorical(torch.rand(3,5)) comp = D.Independent(D.Normal( ... torch.randn(3,5,2), torch.rand(3,5,2)), 1) gmm = MixtureSameFamily(mix, comp)
Parameters
- mixture_distribution (Categorical) – torch.distributions.Categorical-like instance. Manages the probability of selecting component. The number of categories must match the rightmost batch dimension of the component_distribution. Must have either scalar batch_shape or batch_shape matchingcomponent_distribution.batch_shape[:-1]
- component_distribution (Distribution) – torch.distributions.Distribution-like instance. Right-most batch dimension indexes component.
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {}¶
property component_distribution_: Distribution_¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = False¶
property mixture_distribution_: Categorical_¶
sample(sample_shape=torch.Size([]))[source][source]¶
property support¶
Return type
_DependentProperty
Multinomial¶
class torch.distributions.multinomial.Multinomial(total_count=1, probs=None, logits=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a Multinomial distribution parameterized by total_count and either probs or logits (but not both). The innermost dimension ofprobs indexes over categories. All other dimensions index over batches.
Note that total_count need not be specified if only log_prob() is called (see example below)
Note
The probs argument must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1 along the last dimension. probswill return this normalized value. The logits argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. logitswill return this normalized value.
- sample() requires a single shared total_count for all parameters and samples.
- log_prob() allows different total_count for each parameter and sample.
Example:
m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.])) x = m.sample() # equal probability of 0, 1, 2, 3 tensor([ 21., 24., 30., 25.])
Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x) tensor([-4.1338])
Parameters
- total_count (int) – number of trials
- probs (Tensor) – event probabilities
- logits (Tensor) – event log probabilities (unnormalized)
arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}¶
expand(batch_shape, _instance=None)[source][source]¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
property support¶
Return type
_DependentProperty
MultivariateNormal¶
class torch.distributions.multivariate_normal.MultivariateNormal(loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a multivariate normal (also called Gaussian) distribution parameterized by a mean vector and a covariance matrix.
The multivariate normal distribution can be parameterized either in terms of a positive definite covariance matrix Σ\mathbf{\Sigma}or a positive definite precision matrix Σ−1\mathbf{\Sigma}^{-1}or a lower-triangular matrix L\mathbf{L} with positive-valued diagonal entries, such thatΣ=LL⊤\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top. This triangular matrix can be obtained via e.g. Cholesky decomposition of the covariance.
Example
m = MultivariateNormal(torch.zeros(2), torch.eye(2)) m.sample() # normally distributed with mean=
[0,0]
and covariance_matrix=I
tensor([-0.2102, -0.5429])
Parameters
- loc (Tensor) – mean of the distribution
- covariance_matrix (Tensor) – positive-definite covariance matrix
- precision_matrix (Tensor) – positive-definite precision matrix
- scale_tril (Tensor) – lower-triangular factor of covariance, with positive-valued diagonal
Note
Only one of covariance_matrix or precision_matrix orscale_tril can be specified.
Using scale_tril will be more efficient: all computations internally are based on scale_tril. If covariance_matrix orprecision_matrix is passed instead, it is only used to compute the corresponding lower triangular matrices using a Cholesky decomposition.
arg_constraints = {'covariance_matrix': PositiveDefinite(), 'loc': IndependentConstraint(Real(), 1), 'precision_matrix': PositiveDefinite(), 'scale_tril': LowerCholesky()}¶
property covariance_matrix_: Tensor_¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
property precision_matrix_: Tensor_¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
property scale_tril_: Tensor_¶
support = IndependentConstraint(Real(), 1)¶
NegativeBinomial¶
class torch.distributions.negative_binomial.NegativeBinomial(total_count, probs=None, logits=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a Negative Binomial distribution, i.e. distribution of the number of successful independent and identical Bernoulli trials before total_count
failures are achieved. The probability of success of each Bernoulli trial is probs.
Parameters
- total_count (float or Tensor) – non-negative number of negative Bernoulli trials to stop, although the distribution is still valid for real valued count
- probs (Tensor) – Event probabilities of success in the half open interval [0, 1)
- logits (Tensor) – Event log-odds for probabilities of success
arg_constraints = {'logits': Real(), 'probs': HalfOpenInterval(lower_bound=0.0, upper_bound=1.0), 'total_count': GreaterThanEq(lower_bound=0)}¶
expand(batch_shape, _instance=None)[source][source]¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
support = IntegerGreaterThan(lower_bound=0)¶
Normal¶
class torch.distributions.normal.Normal(loc, scale, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a normal (also called Gaussian) distribution parameterized byloc
and scale
.
Example:
m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) m.sample() # normally distributed with loc=0 and scale=1 tensor([ 0.1046])
Parameters
- loc (float or Tensor) – mean of the distribution (often referred to as mu)
- scale (float or Tensor) – standard deviation of the distribution (often referred to as sigma)
arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
sample(sample_shape=torch.Size([]))[source][source]¶
support = Real()¶
OneHotCategorical¶
class torch.distributions.one_hot_categorical.OneHotCategorical(probs=None, logits=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a one-hot categorical distribution parameterized by probs orlogits.
Samples are one-hot coded vectors of size probs.size(-1)
.
Note
The probs argument must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1 along the last dimension. probswill return this normalized value. The logits argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. logitswill return this normalized value.
See also: torch.distributions.Categorical()
for specifications ofprobs and logits.
Example:
m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) m.sample() # equal probability of 0, 1, 2, 3 tensor([ 0., 0., 0., 1.])
Parameters
arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}¶
enumerate_support(expand=True)[source][source]¶
expand(batch_shape, _instance=None)[source][source]¶
has_enumerate_support = True¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
support = OneHot()¶
Pareto¶
class torch.distributions.pareto.Pareto(scale, alpha, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Samples from a Pareto Type 1 distribution.
Example:
m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 tensor([ 1.5623])
Parameters
- scale (float or Tensor) – Scale parameter of the distribution
- alpha (float or Tensor) – Shape parameter of the distribution
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'alpha': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}¶
Return type
expand(batch_shape, _instance=None)[source][source]¶
Return type
property support_: Constraint_¶
Return type
_DependentProperty
Poisson¶
class torch.distributions.poisson.Poisson(rate, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a Poisson distribution parameterized by rate
, the rate parameter.
Samples are nonnegative integers, with a pmf given by
rateke−ratek!\mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!}
Example:
m = Poisson(torch.tensor([4])) m.sample() tensor([ 3.])
Parameters
rate (Number , Tensor) – the rate parameter
arg_constraints = {'rate': GreaterThanEq(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
log_prob(value)[source][source]¶
sample(sample_shape=torch.Size([]))[source][source]¶
support = IntegerGreaterThan(lower_bound=0)¶
RelaxedBernoulli¶
class torch.distributions.relaxed_bernoulli.RelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Creates a RelaxedBernoulli distribution, parametrized bytemperature, and either probs or logits(but not both). This is a relaxed version of the Bernoulli distribution, so the values are in (0, 1), and has reparametrizable samples.
Example:
m = RelaxedBernoulli(torch.tensor([2.2]), ... torch.tensor([0.1, 0.2, 0.3, 0.99])) m.sample() tensor([ 0.2951, 0.3442, 0.8918, 0.9021])
Parameters
- temperature (Tensor) – relaxation temperature
- probs (Number , Tensor) – the probability of sampling 1
- logits (Number , Tensor) – the log-odds of sampling 1
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
support = Interval(lower_bound=0.0, upper_bound=1.0)¶
property temperature_: Tensor_¶
LogitRelaxedBernoulli¶
class torch.distributions.relaxed_bernoulli.LogitRelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None)[source][source]¶
Bases: Distribution
Creates a LogitRelaxedBernoulli distribution parameterized by probsor logits (but not both), which is the logit of a RelaxedBernoulli distribution.
Samples are logits of values in (0, 1). See [1] for more details.
Parameters
- temperature (Tensor) – relaxation temperature
- probs (Number , Tensor) – the probability of sampling 1
- logits (Number , Tensor) – the log-odds of sampling 1
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables (Maddison et al., 2017)
[2] Categorical Reparametrization with Gumbel-Softmax (Jang et al., 2017)
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
support = Real()¶
RelaxedOneHotCategorical¶
class torch.distributions.relaxed_categorical.RelaxedOneHotCategorical(temperature, probs=None, logits=None, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Creates a RelaxedOneHotCategorical distribution parametrized bytemperature, and either probs or logits. This is a relaxed version of the OneHotCategorical
distribution, so its samples are on simplex, and are reparametrizable.
Example:
m = RelaxedOneHotCategorical(torch.tensor([2.2]), ... torch.tensor([0.1, 0.2, 0.3, 0.4])) m.sample() tensor([ 0.1294, 0.2324, 0.3859, 0.2523])
Parameters
- temperature (Tensor) – relaxation temperature
- probs (Tensor) – event probabilities
- logits (Tensor) – unnormalized log probability for each event
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
support = Simplex()¶
property temperature_: Tensor_¶
StudentT¶
class torch.distributions.studentT.StudentT(df, loc=0.0, scale=1.0, validate_args=None)[source][source]¶
Bases: Distribution
Creates a Student’s t-distribution parameterized by degree of freedom df
, mean loc
and scale scale
.
Example:
m = StudentT(torch.tensor([2.0])) m.sample() # Student's t-distributed with degrees of freedom=2 tensor([ 0.1046])
Parameters
- df (float or Tensor) – degrees of freedom
- loc (float or Tensor) – mean of the distribution
- scale (float or Tensor) – scale of the distribution
arg_constraints = {'df': GreaterThan(lower_bound=0.0), 'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
support = Real()¶
TransformedDistribution¶
class torch.distributions.transformed_distribution.TransformedDistribution(base_distribution, transforms, validate_args=None)[source][source]¶
Bases: Distribution
Extension of the Distribution class, which applies a sequence of Transforms to a base distribution. Let f be the composition of transforms applied:
X ~ BaseDistribution Y = f(X) ~ TransformedDistribution(BaseDistribution, f) log p(Y) = log p(X) + log |det (dX/dY)|
Note that the .event_shape
of a TransformedDistribution is the maximum shape of its base distribution and its transforms, since transforms can introduce correlations among events.
An example for the usage of TransformedDistribution would be:
Building a Logistic Distribution
X ~ Uniform(0, 1)
f = a + b * logit(X)
Y ~ f(X) ~ Logistic(a, b)
base_distribution = Uniform(0, 1) transforms = [SigmoidTransform().inv, AffineTransform(loc=a, scale=b)] logistic = TransformedDistribution(base_distribution, transforms)
For more examples, please look at the implementations ofGumbel,HalfCauchy,HalfNormal,LogNormal,Pareto,Weibull,RelaxedBernoulli andRelaxedOneHotCategorical
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {}¶
Computes the cumulative distribution function by inverting the transform(s) and computing the score of the base distribution.
expand(batch_shape, _instance=None)[source][source]¶
Computes the inverse cumulative distribution function using transform(s) and computing the score of the base distribution.
log_prob(value)[source][source]¶
Scores the sample by inverting the transform(s) and computing the score using the score of the base distribution and the log abs det jacobian.
rsample(sample_shape=torch.Size([]))[source][source]¶
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. Samples first from base distribution and appliestransform() for every transform in the list.
Return type
sample(sample_shape=torch.Size([]))[source][source]¶
Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched. Samples first from base distribution and applies transform() for every transform in the list.
property support¶
Return type
_DependentProperty
Uniform¶
class torch.distributions.uniform.Uniform(low, high, validate_args=None)[source][source]¶
Bases: Distribution
Generates uniformly distributed random samples from the half-open interval[low, high)
.
Example:
m = Uniform(torch.tensor([0.0]), torch.tensor([5.0])) m.sample() # uniformly distributed in the range [0.0, 5.0) tensor([ 2.3418])
Parameters
arg_constraints = {'high': Dependent(), 'low': Dependent()}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
rsample(sample_shape=torch.Size([]))[source][source]¶
Return type
property support¶
Return type
_DependentProperty
VonMises¶
class torch.distributions.von_mises.VonMises(loc, concentration, validate_args=None)[source][source]¶
Bases: Distribution
A circular von Mises distribution.
This implementation uses polar coordinates. The loc
and value
args can be any real number (to facilitate unconstrained optimization), but are interpreted as angles modulo 2 pi.
Example::
m = VonMises(torch.tensor([1.0]), torch.tensor([1.0])) m.sample() # von Mises distributed with loc=1 and concentration=1 tensor([1.9777])
Parameters
- loc (torch.Tensor) – an angle in radians.
- concentration (torch.Tensor) – concentration parameter
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'loc': Real()}¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = False¶
log_prob(value)[source][source]¶
The provided mean is the circular one.
sample(sample_shape=torch.Size([]))[source][source]¶
The sampling algorithm for the von Mises distribution is based on the following paper: D.J. Best and N.I. Fisher, “Efficient simulation of the von Mises distribution.” Applied Statistics (1979): 152-157.
Sampling is always done in double precision internally to avoid a hang in _rejection_sample() for small values of the concentration, which starts to happen for single precision around 1e-4 (see issue #88443).
support = Real()¶
The provided variance is the circular one.
Weibull¶
class torch.distributions.weibull.Weibull(scale, concentration, validate_args=None)[source][source]¶
Bases: TransformedDistribution
Samples from a two-parameter Weibull distribution.
Example
m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) m.sample() # sample from a Weibull distribution with scale=1, concentration=1 tensor([ 0.4784])
Parameters
- scale (float or Tensor) – Scale parameter of distribution (lambda).
- concentration (float or Tensor) – Concentration parameter of distribution (k/shape).
arg_constraints_: dict[str, torch.distributions.constraints.Constraint]_ = {'concentration': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}¶
expand(batch_shape, _instance=None)[source][source]¶
support = GreaterThan(lower_bound=0.0)¶
Wishart¶
class torch.distributions.wishart.Wishart(df, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None)[source][source]¶
Bases: ExponentialFamily
Creates a Wishart distribution parameterized by a symmetric positive definite matrix Σ\Sigma, or its Cholesky decomposition Σ=LL⊤\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top
Example
m = Wishart(torch.Tensor([2]), covariance_matrix=torch.eye(2)) m.sample() # Wishart distributed with mean=
df * I
andvariance(x_ij)=
df
for i != j and variance(x_ij)=2 * df
for i == j
Parameters
- df (float or Tensor) – real-valued parameter larger than the (dimension of Square matrix) - 1
- covariance_matrix (Tensor) – positive-definite covariance matrix
- precision_matrix (Tensor) – positive-definite precision matrix
- scale_tril (Tensor) – lower-triangular factor of covariance, with positive-valued diagonal
Note
Only one of covariance_matrix or precision_matrix orscale_tril can be specified. Using scale_tril will be more efficient: all computations internally are based on scale_tril. If covariance_matrix orprecision_matrix is passed instead, it is only used to compute the corresponding lower triangular matrices using a Cholesky decomposition. ‘torch.distributions.LKJCholesky’ is a restricted Wishart distribution.[1]
References
[1] Wang, Z., Wu, Y. and Chu, H., 2018. On equivalence of the LKJ distribution and the restricted Wishart distribution. [2] Sawyer, S., 2007. Wishart Distributions and Inverse-Wishart Sampling. [3] Anderson, T. W., 2003. An Introduction to Multivariate Statistical Analysis (3rd ed.). [4] Odell, P. L. & Feiveson, A. H., 1966. A Numerical Procedure to Generate a SampleCovariance Matrix. JASA, 61(313):199-203. [5] Ku, Y.-C. & Bloomfield, P., 2010. Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX.
arg_constraints = {'covariance_matrix': PositiveDefinite(), 'df': GreaterThan(lower_bound=0), 'precision_matrix': PositiveDefinite(), 'scale_tril': LowerCholesky()}¶
property covariance_matrix_: Tensor_¶
expand(batch_shape, _instance=None)[source][source]¶
has_rsample = True¶
log_prob(value)[source][source]¶
property precision_matrix_: Tensor_¶
rsample(sample_shape=torch.Size([]), max_try_correction=None)[source][source]¶
Warning
In some cases, sampling algorithm based on Bartlett decomposition may return singular matrix samples. Several tries to correct singular samples are performed by default, but it may end up returning singular matrix samples. Singular samples may return -inf values in .log_prob(). In those cases, the user should validate the samples and either fix the value of dfor adjust max_try_correction value for argument in .rsample accordingly.
Return type
property scale_tril_: Tensor_¶
support = PositiveDefinite()¶
KL Divergence¶
torch.distributions.kl.kl_divergence(p, q)[source][source]¶
Compute Kullback-Leibler divergence KL(p∥q)KL(p \| q) between two distributions.
KL(p∥q)=∫p(x)logp(x)q(x) dxKL(p \| q) = \int p(x) \log\frac {p(x)} {q(x)} \,dx
Parameters
- p (Distribution) – A
Distribution
object. - q (Distribution) – A
Distribution
object.
Returns
A batch of KL divergences of shape batch_shape.
Return type
Raises
NotImplementedError – If the distribution types have not been registered viaregister_kl().
KL divergence is currently implemented for the following distribution pairs:
Bernoulli
andBernoulli
Bernoulli
andPoisson
Beta
andBeta
Beta
andContinuousBernoulli
Beta
andExponential
Beta
andGamma
Beta
andNormal
Beta
andPareto
Beta
andUniform
Binomial
andBinomial
Categorical
andCategorical
Cauchy
andCauchy
ContinuousBernoulli
andContinuousBernoulli
ContinuousBernoulli
andExponential
ContinuousBernoulli
andNormal
ContinuousBernoulli
andPareto
ContinuousBernoulli
andUniform
Dirichlet
andDirichlet
Exponential
andBeta
Exponential
andContinuousBernoulli
Exponential
andExponential
Exponential
andGamma
Exponential
andGumbel
Exponential
andNormal
Exponential
andPareto
Exponential
andUniform
ExponentialFamily
andExponentialFamily
Gamma
andBeta
Gamma
andContinuousBernoulli
Gamma
andExponential
Gamma
andGamma
Gamma
andGumbel
Gamma
andNormal
Gamma
andPareto
Gamma
andUniform
Geometric
andGeometric
Gumbel
andBeta
Gumbel
andContinuousBernoulli
Gumbel
andExponential
Gumbel
andGamma
Gumbel
andGumbel
Gumbel
andNormal
Gumbel
andPareto
Gumbel
andUniform
HalfNormal
andHalfNormal
Independent
andIndependent
Laplace
andBeta
Laplace
andContinuousBernoulli
Laplace
andExponential
Laplace
andGamma
Laplace
andLaplace
Laplace
andNormal
Laplace
andPareto
Laplace
andUniform
LowRankMultivariateNormal
andLowRankMultivariateNormal
LowRankMultivariateNormal
andMultivariateNormal
MultivariateNormal
andLowRankMultivariateNormal
MultivariateNormal
andMultivariateNormal
Normal
andBeta
Normal
andContinuousBernoulli
Normal
andExponential
Normal
andGamma
Normal
andGumbel
Normal
andLaplace
Normal
andNormal
Normal
andPareto
Normal
andUniform
OneHotCategorical
andOneHotCategorical
Pareto
andBeta
Pareto
andContinuousBernoulli
Pareto
andExponential
Pareto
andGamma
Pareto
andNormal
Pareto
andPareto
Pareto
andUniform
Poisson
andBernoulli
Poisson
andBinomial
Poisson
andPoisson
TransformedDistribution
andTransformedDistribution
Uniform
andBeta
Uniform
andContinuousBernoulli
Uniform
andExponential
Uniform
andGamma
Uniform
andGumbel
Uniform
andNormal
Uniform
andPareto
Uniform
andUniform
torch.distributions.kl.register_kl(type_p, type_q)[source][source]¶
Decorator to register a pairwise function with kl_divergence(). Usage:
@register_kl(Normal, Normal) def kl_normal_normal(p, q): # insert implementation here
Lookup returns the most specific (type,type) match ordered by subclass. If the match is ambiguous, a RuntimeWarning is raised. For example to resolve the ambiguous situation:
@register_kl(BaseP, DerivedQ) def kl_version1(p, q): ... @register_kl(DerivedP, BaseQ) def kl_version2(p, q): ...
you should register a third most-specific implementation, e.g.:
register_kl(DerivedP, DerivedQ)(kl_version1) # Break the tie.
Parameters
Transforms¶
class torch.distributions.transforms.AbsTransform(cache_size=0)[source][source]¶
Transform via the mapping y=∣x∣y = |x|.
class torch.distributions.transforms.AffineTransform(loc, scale, event_dim=0, cache_size=0)[source][source]¶
Transform via the pointwise affine mapping y=loc+scale×xy = \text{loc} + \text{scale} \times x.
Parameters
- loc (Tensor or float) – Location parameter.
- scale (Tensor or float) – Scale parameter.
- event_dim (int) – Optional size of event_shape. This should be zero for univariate random variables, 1 for distributions over vectors, 2 for distributions over matrices, etc.
class torch.distributions.transforms.CatTransform(tseq, dim=0, lengths=None, cache_size=0)[source][source]¶
Transform functor that applies a sequence of transforms tseqcomponent-wise to each submatrix at dim, of length lengths[dim], in a way compatible with torch.cat().
Example:
x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0) x = torch.cat([x0, x0], dim=0) t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10]) t = CatTransform([t0, t0], dim=0, lengths=[20, 20]) y = t(x)
class torch.distributions.transforms.ComposeTransform(parts, cache_size=0)[source][source]¶
Composes multiple transforms in a chain. The transforms being composed are responsible for caching.
Parameters
- parts (list of Transform) – A list of transforms to compose.
- cache_size (int) – Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported.
class torch.distributions.transforms.CorrCholeskyTransform(cache_size=0)[source][source]¶
Transforms an uncontrained real vector xx with length D∗(D−1)/2D*(D-1)/2 into the Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower triangular matrix with positive diagonals and unit Euclidean norm for each row. The transform is processed as follows:
- First we convert x into a lower triangular matrix in row order.
- For each row XiX_i of the lower triangular part, we apply a signed version of class StickBreakingTransform to transform XiX_i into a unit Euclidean length vector using the following steps: - Scales into the interval (−1,1)(-1, 1) domain: ri=tanh(Xi)r_i = \tanh(X_i). - Transforms into an unsigned domain: zi=ri2z_i = r_i^2. - Applies si=StickBreakingTransform(zi)s_i = StickBreakingTransform(z_i). - Transforms back into signed domain: yi=sign(ri)∗siy_i = sign(r_i) * \sqrt{s_i}.
class torch.distributions.transforms.CumulativeDistributionTransform(distribution, cache_size=0)[source][source]¶
Transform via the cumulative distribution function of a probability distribution.
Parameters
distribution (Distribution) – Distribution whose cumulative distribution function to use for the transformation.
Example:
Construct a Gaussian copula from a multivariate normal.
base_dist = MultivariateNormal( loc=torch.zeros(2), scale_tril=LKJCholesky(2).sample(), ) transform = CumulativeDistributionTransform(Normal(0, 1)) copula = TransformedDistribution(base_dist, [transform])
class torch.distributions.transforms.ExpTransform(cache_size=0)[source][source]¶
Transform via the mapping y=exp(x)y = \exp(x).
class torch.distributions.transforms.IndependentTransform(base_transform, reinterpreted_batch_ndims, cache_size=0)[source][source]¶
Wrapper around another transform to treatreinterpreted_batch_ndims
-many extra of the right most dimensions as dependent. This has no effect on the forward or backward transforms, but does sum out reinterpreted_batch_ndims
-many of the rightmost dimensions in log_abs_det_jacobian()
.
Parameters
- base_transform (Transform) – A base transform.
- reinterpreted_batch_ndims (int) – The number of extra rightmost dimensions to treat as dependent.
class torch.distributions.transforms.LowerCholeskyTransform(cache_size=0)[source][source]¶
Transform from unconstrained matrices to lower-triangular matrices with nonnegative diagonal entries.
This is useful for parameterizing positive definite matrices in terms of their Cholesky factorization.
class torch.distributions.transforms.PositiveDefiniteTransform(cache_size=0)[source][source]¶
Transform from unconstrained matrices to positive-definite matrices.
class torch.distributions.transforms.PowerTransform(exponent, cache_size=0)[source][source]¶
Transform via the mapping y=xexponenty = x^{\text{exponent}}.
class torch.distributions.transforms.ReshapeTransform(in_shape, out_shape, cache_size=0)[source][source]¶
Unit Jacobian transform to reshape the rightmost part of a tensor.
Note that in_shape
and out_shape
must have the same number of elements, just as for torch.Tensor.reshape().
Parameters
- in_shape (torch.Size) – The input event shape.
- out_shape (torch.Size) – The output event shape.
- cache_size (int) – Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported. (Default 0.)
class torch.distributions.transforms.SigmoidTransform(cache_size=0)[source][source]¶
Transform via the mapping y=11+exp(−x)y = \frac{1}{1 + \exp(-x)} and x=logit(y)x = \text{logit}(y).
class torch.distributions.transforms.SoftplusTransform(cache_size=0)[source][source]¶
Transform via the mapping Softplus(x)=log(1+exp(x))\text{Softplus}(x) = \log(1 + \exp(x)). The implementation reverts to the linear function when x>20x > 20.
class torch.distributions.transforms.TanhTransform(cache_size=0)[source][source]¶
Transform via the mapping y=tanh(x)y = \tanh(x).
It is equivalent to
ComposeTransform( [ AffineTransform(0.0, 2.0), SigmoidTransform(), AffineTransform(-1.0, 2.0), ] )
However this might not be numerically stable, thus it is recommended to use TanhTransforminstead.
Note that one should use cache_size=1 when it comes to NaN/Inf values.
class torch.distributions.transforms.SoftmaxTransform(cache_size=0)[source][source]¶
Transform from unconstrained space to the simplex via y=exp(x)y = \exp(x) then normalizing.
This is not bijective and cannot be used for HMC. However this acts mostly coordinate-wise (except for the final normalization), and thus is appropriate for coordinate-wise optimization algorithms.
class torch.distributions.transforms.StackTransform(tseq, dim=0, cache_size=0)[source][source]¶
Transform functor that applies a sequence of transforms tseqcomponent-wise to each submatrix at dimin a way compatible with torch.stack().
Example:
x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1) t = StackTransform([ExpTransform(), identity_transform], dim=1) y = t(x)
class torch.distributions.transforms.StickBreakingTransform(cache_size=0)[source][source]¶
Transform from unconstrained space to the simplex of one additional dimension via a stick-breaking process.
This transform arises as an iterated sigmoid transform in a stick-breaking construction of the Dirichlet distribution: the first logit is transformed via sigmoid to the first probability and the probability of everything else, and then the process recurses.
This is bijective and appropriate for use in HMC; however it mixes coordinates together and is less appropriate for optimization.
class torch.distributions.transforms.Transform(cache_size=0)[source][source]¶
Abstract class for invertable transformations with computable log det jacobians. They are primarily used intorch.distributions.TransformedDistribution
.
Caching is useful for transforms whose inverses are either expensive or numerically unstable. Note that care must be taken with memoized values since the autograd graph may be reversed. For example while the following works with or without caching:
y = t(x) t.log_abs_det_jacobian(x, y).backward() # x will receive gradients.
However the following will error when caching due to dependency reversal:
y = t(x) z = t.inv(y) grad(z.sum(), [y]) # error because z is x
Derived classes should implement one or both of _call()
or_inverse()
. Derived classes that set bijective=True should also implement log_abs_det_jacobian().
Parameters
cache_size (int) – Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported.
Variables
- domain (Constraint) – The constraint representing valid inputs to this transform.
- codomain (Constraint) – The constraint representing valid outputs to this transform which are inputs to the inverse transform.
- bijective (bool) – Whether this transform is bijective. A transform
t
is bijective ifft.inv(t(x)) == x
andt(t.inv(y)) == y
for everyx
in the domain andy
in the codomain. Transforms that are not bijective should at least maintain the weaker pseudoinverse propertiest(t.inv(t(x)) == t(x)
andt.inv(t(t.inv(y))) == t.inv(y)
. - sign (int or Tensor) – For bijective univariate transforms, this should be +1 or -1 depending on whether transform is monotone increasing or decreasing.
Returns the inverse Transform of this transform. This should satisfy t.inv.inv is t
.
Returns the sign of the determinant of the Jacobian, if applicable. In general this only makes sense for bijective transforms.
log_abs_det_jacobian(x, y)[source][source]¶
Computes the log det jacobian log |dy/dx| given input and output.
forward_shape(shape)[source][source]¶
Infers the shape of the forward computation, given the input shape. Defaults to preserving shape.
inverse_shape(shape)[source][source]¶
Infers the shapes of the inverse computation, given the output shape. Defaults to preserving shape.
Constraints¶
class torch.distributions.constraints.Constraint[source][source]¶
Abstract base class for constraints.
A constraint object represents a region over which a variable is valid, e.g. within which a variable can be optimized.
Variables
- is_discrete (bool) – Whether constrained space is discrete. Defaults to False.
- event_dim (int) – Number of rightmost dimensions that together define an event. The check() method will remove this many dimensions when computing validity.
Returns a byte tensor of sample_shape + batch_shape
indicating whether each event in value satisfies this constraint.
torch.distributions.constraints.cat[source]¶
alias of _Cat
torch.distributions.constraints.dependent_property[source]¶
alias of _DependentProperty
torch.distributions.constraints.greater_than[source]¶
alias of _GreaterThan
torch.distributions.constraints.greater_than_eq[source]¶
alias of _GreaterThanEq
torch.distributions.constraints.independent[source]¶
alias of _IndependentConstraint
torch.distributions.constraints.integer_interval[source]¶
alias of _IntegerInterval
torch.distributions.constraints.interval[source]¶
alias of _Interval
torch.distributions.constraints.half_open_interval[source]¶
alias of _HalfOpenInterval
torch.distributions.constraints.is_dependent(constraint)[source][source]¶
Checks if constraint
is a _Dependent
object.
Parameters
constraint – A Constraint
object.
Returns
True if constraint
can be refined to the type _Dependent
, False otherwise.
Return type
bool
Examples
import torch from torch.distributions import Bernoulli from torch.distributions.constraints import is_dependent
dist = Bernoulli(probs=torch.tensor([0.6], requires_grad=True)) constraint1 = dist.arg_constraints["probs"] constraint2 = dist.arg_constraints["logits"]
for constraint in [constraint1, constraint2]: if is_dependent(constraint): continue
torch.distributions.constraints.less_than[source]¶
alias of _LessThan
torch.distributions.constraints.multinomial[source]¶
alias of _Multinomial
torch.distributions.constraints.stack[source]¶
alias of _Stack
Constraint Registry¶
PyTorch provides two global ConstraintRegistry objects that linkConstraint objects toTransform objects. These objects both input constraints and return transforms, but they have different guarantees on bijectivity.
biject_to(constraint)
looks up a bijectiveTransform fromconstraints.real
to the givenconstraint
. The returned transform is guaranteed to have.bijective = True
and should implement.log_abs_det_jacobian()
.transform_to(constraint)
looks up a not-necessarily bijectiveTransform fromconstraints.real
to the givenconstraint
. The returned transform is not guaranteed to implement.log_abs_det_jacobian()
.
The transform_to()
registry is useful for performing unconstrained optimization on constrained parameters of probability distributions, which are indicated by each distribution’s .arg_constraints
dict. These transforms often overparameterize a space in order to avoid rotation; they are thus more suitable for coordinate-wise optimization algorithms like Adam:
loc = torch.zeros(100, requires_grad=True) unconstrained = torch.zeros(100, requires_grad=True) scale = transform_to(Normal.arg_constraints["scale"])(unconstrained) loss = -Normal(loc, scale).log_prob(data).sum()
The biject_to()
registry is useful for Hamiltonian Monte Carlo, where samples from a probability distribution with constrained .support
are propagated in an unconstrained space, and algorithms are typically rotation invariant.:
dist = Exponential(rate) unconstrained = torch.zeros(100, requires_grad=True) sample = biject_to(dist.support)(unconstrained) potential_energy = -dist.log_prob(sample).sum()
Note
An example where transform_to
and biject_to
differ isconstraints.simplex
: transform_to(constraints.simplex)
returns aSoftmaxTransform that simply exponentiates and normalizes its inputs; this is a cheap and mostly coordinate-wise operation appropriate for algorithms like SVI. In contrast, biject_to(constraints.simplex)
returns aStickBreakingTransform that bijects its input down to a one-fewer-dimensional space; this a more expensive less numerically stable transform but is needed for algorithms like HMC.
The biject_to
and transform_to
objects can be extended by user-defined constraints and transforms using their .register()
method either as a function on singleton constraints:
transform_to.register(my_constraint, my_transform)
or as a decorator on parameterized constraints:
@transform_to.register(MyConstraintClass) def my_factory(constraint): assert isinstance(constraint, MyConstraintClass) return MyTransform(constraint.param1, constraint.param2)
You can create your own registry by creating a new ConstraintRegistryobject.
class torch.distributions.constraint_registry.ConstraintRegistry[source][source]¶
Registry to link constraints to transforms.
register(constraint, factory=None)[source][source]¶
Registers a Constraintsubclass in this registry. Usage:
@my_registry.register(MyConstraintClass) def construct_transform(constraint): assert isinstance(constraint, MyConstraint) return MyTransform(constraint.arg_constraints)
Parameters
- constraint (subclass of Constraint) – A subclass of Constraint, or a singleton object of the desired class.
- factory (Callable) – A callable that inputs a constraint object and returns a Transform object.