torch.logspace — PyTorch 2.7 documentation (original) (raw)

torch.logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

Creates a one-dimensional tensor of size steps whose values are evenly spaced from basestart{{\text{{base}}}}^{{\text{{start}}}} tobaseend{{\text{{base}}}}^{{\text{{end}}}}, inclusive, on a logarithmic scale with base base. That is, the values are:

(basestart,base(start+end−startsteps−1),…,base(start+(steps−2)∗end−startsteps−1),baseend)(\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}})

From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior.

Parameters

Keyword Arguments

Example:

torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0])