AvgPool1d — PyTorch 2.7 documentation (original) (raw)

class torch.nn.AvgPool1d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)[source][source]

Applies a 1D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,L)(N, C, L), output (N,C,Lout)(N, C, L_{out}) and kernel_size kkcan be precisely described as:

out(Ni,Cj,l)=1k∑m=0k−1input(Ni,Cj,stride×l+m)\text{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1} \text{input}(N_i, C_j, \text{stride} \times l + m)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

The parameters kernel_size, stride, padding can each be an int or a one-element tuple.

Parameters

Shape:

Examples:

pool with window of size=3, stride=2

m = nn.AvgPool1d(3, stride=2) m(torch.tensor([[[1., 2, 3, 4, 5, 6, 7]]])) tensor([[[2., 4., 6.]]])