LazyConv3d — PyTorch 2.7 documentation (original) (raw)
class torch.nn.LazyConv3d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)[source][source]¶
A torch.nn.Conv3d module with lazy initialization of the in_channels
argument.
The in_channels
argument of the Conv3d that is inferred from the input.size(1)
. The attributes that will be lazily initialized are weight and bias.
Check the torch.nn.modules.lazy.LazyModuleMixin for further documentation on lazy modules and their limitations.
Parameters
- out_channels (int) – Number of channels produced by the convolution
- kernel_size (int or tuple) – Size of the convolving kernel
- stride (int or tuple, optional) – Stride of the convolution. Default: 1
- padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
- dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
- groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
- padding_mode (str, optional) –
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
alias of Conv3d