Softplus — PyTorch 2.7 documentation (original) (raw)

class torch.nn.Softplus(beta=1.0, threshold=20.0)[source][source]

Applies the Softplus function element-wise.

Softplus(x)=1β∗log⁡(1+exp⁡(β∗x))\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))

SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.

For numerical stability the implementation reverts to the linear function when input×β>thresholdinput \times \beta > threshold.

Parameters

Shape:

../_images/Softplus.png

Examples:

m = nn.Softplus() input = torch.randn(2) output = m(input)