Upsample — PyTorch 2.7 documentation (original) (raw)

class torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None)[source][source]

Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.

The input data is assumed to be of the formminibatch x channels x [optional depth] x [optional height] x width. Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor.

The algorithms available for upsampling are nearest neighbor and linear, bilinear, bicubic and trilinear for 3D, 4D and 5D input Tensor, respectively.

One can either give a scale_factor or the target output size to calculate the output size. (You cannot give both, as it is ambiguous)

Parameters

Shape:

Dout=⌊Din×scale_factor⌋D_{out} = \left\lfloor D_{in} \times \text{scale\_factor} \right\rfloor

Hout=⌊Hin×scale_factor⌋H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor

Wout=⌊Win×scale_factor⌋W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor

Warning

With align_corners = True, the linearly interpolating modes (linear, bilinear, bicubic, and trilinear) don’t proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1. Since then, the default behavior isalign_corners = False. See below for concrete examples on how this affects the outputs.

Note

If you want downsampling/general resizing, you should use interpolate().

Examples:

input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) input tensor([[[[1., 2.], [3., 4.]]]])

m = nn.Upsample(scale_factor=2, mode='nearest') m(input) tensor([[[[1., 1., 2., 2.], [1., 1., 2., 2.], [3., 3., 4., 4.], [3., 3., 4., 4.]]]])

m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False m(input) tensor([[[[1.0000, 1.2500, 1.7500, 2.0000], [1.5000, 1.7500, 2.2500, 2.5000], [2.5000, 2.7500, 3.2500, 3.5000], [3.0000, 3.2500, 3.7500, 4.0000]]]])

m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) m(input) tensor([[[[1.0000, 1.3333, 1.6667, 2.0000], [1.6667, 2.0000, 2.3333, 2.6667], [2.3333, 2.6667, 3.0000, 3.3333], [3.0000, 3.3333, 3.6667, 4.0000]]]])

Try scaling the same data in a larger tensor

input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3) input_3x3[:, :, :2, :2].copy_(input) tensor([[[[1., 2.], [3., 4.]]]]) input_3x3 tensor([[[[1., 2., 0.], [3., 4., 0.], [0., 0., 0.]]]])

m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False

Notice that values in top left corner are the same with the small input (except at boundary)

m(input_3x3) tensor([[[[1.0000, 1.2500, 1.7500, 1.5000, 0.5000, 0.0000], [1.5000, 1.7500, 2.2500, 1.8750, 0.6250, 0.0000], [2.5000, 2.7500, 3.2500, 2.6250, 0.8750, 0.0000], [2.2500, 2.4375, 2.8125, 2.2500, 0.7500, 0.0000], [0.7500, 0.8125, 0.9375, 0.7500, 0.2500, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])

m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

Notice that values in top left corner are now changed

m(input_3x3) tensor([[[[1.0000, 1.4000, 1.8000, 1.6000, 0.8000, 0.0000], [1.8000, 2.2000, 2.6000, 2.2400, 1.1200, 0.0000], [2.6000, 3.0000, 3.4000, 2.8800, 1.4400, 0.0000], [2.4000, 2.7200, 3.0400, 2.5600, 1.2800, 0.0000], [1.2000, 1.3600, 1.5200, 1.2800, 0.6400, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])