Adafactor — PyTorch 2.7 documentation (original) (raw)

class torch.optim.Adafactor(params, lr=0.01, beta2_decay=-0.8, eps=(None, 0.001), d=1.0, weight_decay=0.0, *, foreach=None, maximize=False)

Implements Adafactor algorithm.

input:γ(lr), τ(β2 decay), θ0(params), f(θ)(objective), ϵ1,ϵ2 (epsilons), d(clipping threshold), λ(weight decay), maximizeinitialize: R0←0 (second moment row factor), C0←0 (second moment col factor), V^0←0 (second moment for vectors)for t=1 to … doif maximize:Gt←−∇θft(θt−1)elseGt←∇θft(θt−1)β^2t←1−tτρt←min(lr,1t)αt←max(ϵ2,RMS(θt−1))ρtθt←θt−1−γλθt−1if dim(Gt)>1:Rt←β^2tRt−1+(1−β^2t)(Gt⊙Gt)⋅1mCt←β^2tCt−1+(1−β^2t)1n⊤⋅(Gt⊙Gt)V^t←Rt⋅Ctmax(1n⊤⋅Rt,ϵ1)elseV^t←β^2tV^t−1+(1−β^2t)⋅(Gt⊙Gt)Ut←Gtmax(V^t,ϵ1)U^t←Utmax(1,RMS(Ut)d)θt←θt−1−αtU^treturn θt\begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{(lr)}, \: \tau \text{(}\beta_2\text{ decay)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \\ &\hspace{15mm} \: \epsilon_1, \epsilon_2 \text{ (epsilons)}, \: d \text{(clipping threshold)}, \\ &\hspace{15mm} \: \lambda \text{(weight decay)}, \: \textit{maximize} \\ &\textbf{initialize} : \: R_0 \leftarrow 0 \text{ (second moment row factor)}, \\ &\hspace{23mm} \: C_0 \leftarrow 0 \text{ (second moment col factor)}, \\ &\hspace{23mm} \: \widehat{V}_0 \leftarrow 0 \text{ (second moment for vectors)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}G_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}G_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\widehat{\beta}_{2_t} \leftarrow 1 - t^{\tau} \\ &\hspace{5mm}\rho_t \leftarrow min(lr, \frac{1}{\sqrt{t}}) \\ &\hspace{5mm}\alpha_t \leftarrow max(\epsilon_2, \text{RMS}(\theta_{t-1}))\rho_t \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ &\hspace{5mm}\textbf{if} \: \text{dim}(G_t) > 1: \\ &\hspace{10mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+ (1-\widehat{\beta}_{2_t})(G_t \odot G_t) \cdot 1_m \\ &\hspace{10mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+ (1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t) \\ &\hspace{10mm}\widehat{V}_t \leftarrow \frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)} \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\widehat{V}_t \leftarrow \widehat{\beta}_{2_t}\widehat{V}_{t-1}+ (1-\widehat{\beta}_{2_t}) \cdot (G_t \odot G_t) \\ &\hspace{5mm}U_t \leftarrow \frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)} \\ &\hspace{5mm}\widehat{U}_t \leftarrow \frac{U_t}{max(1, \frac{\text{RMS}(U_t)}{d})} \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \alpha_t \widehat{U}_t \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned}

For further details regarding the algorithm we refer to Adafactor: Adaptive Learning Rates with Sublinear Memory Cost.

Parameters

Note

The implementation of Adafactor subtly differs from Shazeer, Noam, and Mitchell Stern and implementations in some other frameworks with its use of learning rate andϵ1\epsilon_1.

Regarding the learning rate hyperparameter: Shazeer, Noam, and Mitchell Stern do not use lr at all, as the stated algorithm uses ρt\rho_t and update clipping to affect the step size.

This implementation allows lr to influence the maximum value for ρt\rho_t:

ρt←min(lr,1t)\begin{aligned} &\hspace{5mm}\rho_t \leftarrow min(lr, \frac{1}{\sqrt{t}}) \end{aligned}

This differs from Shazeer, Noam, and Mitchell Stern, who use a constant of 0.01 as the maximum value of ρt\rho_t

ρt←min(0.01,1t)\begin{aligned} &\hspace{5mm}\rho_t \leftarrow min(0.01, \frac{1}{\sqrt{t}}) \end{aligned}

Shazeer, Noam, and Mitchell Stern do not enforce an opinion on how weight decay should be computed, and so we use the learning rate as a coefficient for decoupled weight decay, similar to what is suggested in Decoupled Weight Decay Regularization.

Regarding the use of ϵ1\epsilon_1: The implementation attempts to replicate the presumed intention of Shazeer, Noam, and Mitchell Stern to use ϵ1\epsilon_1 as a stabilizing term when the squared gradient becomes small.

This stabilization can be written as

Rt←β^2tRt−1+(1−β^2t)(Gt⊙Gt+1n⋅1m⊤)⋅1mCt←β^2tCt−1+(1−β^2t)1n⊤⋅(Gt⊙Gt+1n⋅1m⊤)V^t←Rt⋅Ctmax(1n⊤⋅Rt,ϵ1)Ut←Gtmax(V^t,ϵ1)\begin{aligned} &\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+ (1-\widehat{\beta}_{2_t})(G_t \odot G_t + 1_n \cdot 1^\top_m) \cdot 1_m \\ &\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+ (1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + 1_n \cdot 1^\top_m) \\ &\hspace{5mm}\widehat{V}_t \leftarrow \frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)} \\ &\hspace{5mm}U_t \leftarrow \frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)} \\ \end{aligned}

where the row and column factors of gradient squared RtR_t and CtC_tare left alone, and we apply ϵ1\epsilon_1 at the final calculation of the variance estimate V^t\widehat{V}_t and for the update UtU_t.

This is in contrast to Shazeer, Noam, and Mitchell Stern and other frameworks which apply ϵ1\epsilon_1 to both row and column factors of the squared gradient, but not in the calculations after:

Rt←β^2tRt−1+(1−β^2t)(Gt⊙Gt+ϵ11n⋅1m⊤)⋅1mCt←β^2tCt−1+(1−β^2t)1n⊤⋅(Gt⊙Gt+ϵ11n⋅1m⊤)V^t←Rt⋅Ct1n⊤⋅RtUt←GtV^t\begin{aligned} &\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+ (1-\widehat{\beta}_{2_t})(G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m) \cdot 1_m \\ &\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+ (1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m) \\ &\hspace{5mm}\widehat{V}_t \leftarrow \frac{R_t \cdot C_t}{1^\top_n \cdot R_t} \\ &\hspace{5mm}U_t \leftarrow \frac{G_t}{\sqrt{\widehat{V}_t}} \\ \end{aligned}

add_param_group(param_group)[source]

Add a param group to the Optimizer s param_groups.

This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the Optimizer as training progresses.

Parameters

param_group (dict) – Specifies what Tensors should be optimized along with group specific optimization options.

load_state_dict(state_dict)[source]

Load the optimizer state.

Parameters

state_dict (dict) – optimizer state. Should be an object returned from a call to state_dict().

Note

The names of the parameters (if they exist under the “param_names” key of each param group in state_dict()) will not affect the loading process. To use the parameters’ names for custom cases (such as when the parameters in the loaded state dict differ from those initialized in the optimizer), a custom register_load_state_dict_pre_hook should be implemented to adapt the loaded dict accordingly. If param_names exist in loaded state dict param_groups they will be saved and override the current names, if present, in the optimizer state. If they do not exist in loaded state dict, the optimizer param_names will remain unchanged.

register_load_state_dict_post_hook(hook, prepend=False)[source]

Register a load_state_dict post-hook which will be called afterload_state_dict() is called. It should have the following signature:

The optimizer argument is the optimizer instance being used.

The hook will be called with argument self after callingload_state_dict on self. The registered hook can be used to perform post-processing after load_state_dict has loaded thestate_dict.

Parameters

Returns

a handle that can be used to remove the added hook by callinghandle.remove()

Return type

torch.utils.hooks.RemoveableHandle

register_load_state_dict_pre_hook(hook, prepend=False)[source]

Register a load_state_dict pre-hook which will be called beforeload_state_dict() is called. It should have the following signature:

hook(optimizer, state_dict) -> state_dict or None

The optimizer argument is the optimizer instance being used and thestate_dict argument is a shallow copy of the state_dict the user passed in to load_state_dict. The hook may modify the state_dict inplace or optionally return a new one. If a state_dict is returned, it will be used to be loaded into the optimizer.

The hook will be called with argument self and state_dict before calling load_state_dict on self. The registered hook can be used to perform pre-processing before the load_state_dict call is made.

Parameters

Returns

a handle that can be used to remove the added hook by callinghandle.remove()

Return type

torch.utils.hooks.RemoveableHandle

register_state_dict_post_hook(hook, prepend=False)[source]

Register a state dict post-hook which will be called after state_dict() is called.

It should have the following signature:

hook(optimizer, state_dict) -> state_dict or None

The hook will be called with arguments self and state_dict after generating a state_dict on self. The hook may modify the state_dict inplace or optionally return a new one. The registered hook can be used to perform post-processing on the state_dict before it is returned.

Parameters

Returns

a handle that can be used to remove the added hook by callinghandle.remove()

Return type

torch.utils.hooks.RemoveableHandle

register_state_dict_pre_hook(hook, prepend=False)[source]

Register a state dict pre-hook which will be called before state_dict() is called.

It should have the following signature:

The optimizer argument is the optimizer instance being used. The hook will be called with argument self before calling state_dict on self. The registered hook can be used to perform pre-processing before the state_dictcall is made.

Parameters

Returns

a handle that can be used to remove the added hook by callinghandle.remove()

Return type

torch.utils.hooks.RemoveableHandle

register_step_post_hook(hook)[source]

Register an optimizer step post hook which will be called after optimizer step.

It should have the following signature:

hook(optimizer, args, kwargs) -> None

The optimizer argument is the optimizer instance being used.

Parameters

hook (Callable) – The user defined hook to be registered.

Returns

a handle that can be used to remove the added hook by callinghandle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_step_pre_hook(hook)[source]

Register an optimizer step pre hook which will be called before optimizer step.

It should have the following signature:

hook(optimizer, args, kwargs) -> None or modified args and kwargs

The optimizer argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs.

Parameters

hook (Callable) – The user defined hook to be registered.

Returns

a handle that can be used to remove the added hook by callinghandle.remove()

Return type

torch.utils.hooks.RemovableHandle

state_dict()[source]

Return the state of the optimizer as a dict.

It contains two entries:

NOTE: The parameter IDs may look like indices but they are just IDs associating state with param_group. When loading from a state_dict, the optimizer will zip the param_group params (int IDs) and the optimizer param_groups (actual nn.Parameter s) in order to match state WITHOUT additional verification.

A returned state dict might look something like:

{ 'state': { 0: {'momentum_buffer': tensor(...), ...}, 1: {'momentum_buffer': tensor(...), ...}, 2: {'momentum_buffer': tensor(...), ...}, 3: {'momentum_buffer': tensor(...), ...} }, 'param_groups': [ { 'lr': 0.01, 'weight_decay': 0, ... 'params': [0] 'param_names' ['param0'] (optional) }, { 'lr': 0.001, 'weight_decay': 0.5, ... 'params': [1, 2, 3] 'param_names': ['param1', 'layer.weight', 'layer.bias'] (optional) } ] }

Return type

dict[str, Any]

step(closure=None)[source][source]

Perform a single optimization step.

Parameters

closure (Callable , optional) – A closure that reevaluates the model and returns the loss.

zero_grad(set_to_none=True)[source]

Reset the gradients of all optimized torch.Tensor s.

Parameters

set_to_none (bool) – instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests zero_grad(set_to_none=True) followed by a backward pass, .grads are guaranteed to be None for params that did not receive a gradient. 3. torch.optim optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).