PolynomialLR — PyTorch 2.7 documentation (original) (raw)

class torch.optim.lr_scheduler.PolynomialLR(optimizer, total_iters=5, power=1.0, last_epoch=-1)[source][source]

Decays the learning rate of each parameter group using a polynomial function in the given total_iters.

When last_epoch=-1, sets initial lr as lr.

Parameters

Example

Assuming optimizer uses lr = 0.001 for all groups

lr = 0.001 if epoch == 0

lr = 0.00075 if epoch == 1

lr = 0.00050 if epoch == 2

lr = 0.00025 if epoch == 3

lr = 0.0 if epoch >= 4

scheduler = PolynomialLR(optimizer, total_iters=4, power=1.0) for epoch in range(100): train(...) validate(...) scheduler.step()

get_last_lr()[source]

Return last computed learning rate by current scheduler.

Return type

list[float]

get_lr()[source][source]

Compute the learning rate.

load_state_dict(state_dict)[source]

Load the scheduler’s state.

Parameters

state_dict (dict) – scheduler state. Should be an object returned from a call to state_dict().

state_dict()[source]

Return the state of the scheduler as a dict.

It contains an entry for every variable in self.__dict__ which is not the optimizer.

step(epoch=None)[source]

Perform a step.