torch.randperm — PyTorch 2.7 documentation (original) (raw)
torch.randperm(n, *, generator=None, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor¶
Returns a random permutation of integers from 0
to n - 1
.
Parameters
n (int) – the upper bound (exclusive)
Keyword Arguments
- generator (torch.Generator, optional) – a pseudorandom number generator for sampling
- out (Tensor, optional) – the output tensor.
- dtype (torch.dtype, optional) – the desired data type of returned tensor. Default:
torch.int64
. - layout (torch.layout, optional) – the desired layout of returned Tensor. Default:
torch.strided
. - device (torch.device, optional) – the desired device of returned tensor. Default: if
None
, uses the current device for the default tensor type (see torch.set_default_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. - requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
. - pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.
Example:
torch.randperm(4) tensor([2, 1, 0, 3])