torch.nn.init (original) (raw)
Created On: Jun 11, 2019 | Last Updated On: Jul 07, 2022
Warning
All the functions in this module are intended to be used to initialize neural network parameters, so they all run in torch.no_grad() mode and will not be taken into account by autograd.
torch.nn.init.calculate_gain(nonlinearity, param=None)[source]#
Return the recommended gain value for the given nonlinearity function.
The values are as follows:
Warning
In order to implement Self-Normalizing Neural Networks , you should use nonlinearity='linear' instead of nonlinearity='selu'. This gives the initial weights a variance of 1 / N, which is necessary to induce a stable fixed point in the forward pass. In contrast, the default gain for SELU sacrifices the normalization effect for more stable gradient flow in rectangular layers.
Parameters
- nonlinearity (Literal[ 'linear' , 'conv1d' , 'conv2d' , 'conv3d' , 'conv_transpose1d' , 'conv_transpose2d' , 'conv_transpose3d' , 'sigmoid' , 'tanh' , 'relu' , 'leaky_relu' , 'selu' ]) – the non-linear function (nn.functional name)
- param (Optional[_Union[_int, float] ]) – optional parameter for the non-linear function
Return type
Examples
gain = nn.init.calculate_gain( ... "leaky_relu", 0.2 ... ) # leaky_relu with negative_slope=0.2
torch.nn.init.uniform_(tensor, a=0.0, b=1.0, generator=None)[source]#
Fill the input Tensor with values drawn from the uniform distribution.
U(a,b)\mathcal{U}(a, b).
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- a (float) – the lower bound of the uniform distribution
- b (float) – the upper bound of the uniform distribution
- generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.uniform_(w)
torch.nn.init.normal_(tensor, mean=0.0, std=1.0, generator=None)[source]#
Fill the input Tensor with values drawn from the normal distribution.
N(mean,std2)\mathcal{N}(\text{mean}, \text{std}^2).
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- mean (float) – the mean of the normal distribution
- std (float) – the standard deviation of the normal distribution
- generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.normal_(w)
torch.nn.init.constant_(tensor, val)[source]#
Fill the input Tensor with the value val\text{val}.
Parameters
Return type
Examples
w = torch.empty(3, 5) nn.init.constant_(w, 0.3)
torch.nn.init.ones_(tensor)[source]#
Fill the input Tensor with the scalar value 1.
Parameters
tensor (Tensor) – an n-dimensional torch.Tensor
Return type
Examples
w = torch.empty(3, 5) nn.init.ones_(w)
torch.nn.init.zeros_(tensor)[source]#
Fill the input Tensor with the scalar value 0.
Parameters
tensor (Tensor) – an n-dimensional torch.Tensor
Return type
Examples
w = torch.empty(3, 5) nn.init.zeros_(w)
torch.nn.init.eye_(tensor)[source]#
Fill the 2-dimensional input Tensor with the identity matrix.
Preserves the identity of the inputs in Linear layers, where as many inputs are preserved as possible.
Parameters
tensor (Tensor) – a 2-dimensional torch.Tensor
Return type
Examples
w = torch.empty(3, 5) nn.init.eye_(w)
torch.nn.init.dirac_(tensor, groups=1)[source]#
Fill the {3, 4, 5}-dimensional input Tensor with the Dirac delta function.
Preserves the identity of the inputs in Convolutionallayers, where as many input channels are preserved as possible. In case of groups>1, each group of channels preserves identity
Parameters
- tensor (Tensor) – a {3, 4, 5}-dimensional torch.Tensor
- groups (int, optional) – number of groups in the conv layer (default: 1)
Return type
Examples
w = torch.empty(3, 16, 5, 5) nn.init.dirac_(w) w = torch.empty(3, 24, 5, 5) nn.init.dirac_(w, 3)
torch.nn.init.xavier_uniform_(tensor, gain=1.0, generator=None)[source]#
Fill the input Tensor with values using a Xavier uniform distribution.
The method is described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010). The resulting tensor will have values sampled fromU(−a,a)\mathcal{U}(-a, a) where
a=gain×6fan_in+fan_outa = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}
Also known as Glorot initialization.
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- gain (float) – an optional scaling factor
- generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain("relu"))
torch.nn.init.xavier_normal_(tensor, gain=1.0, generator=None)[source]#
Fill the input Tensor with values using a Xavier normal distribution.
The method is described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010). The resulting tensor will have values sampled from N(0,std2)\mathcal{N}(0, \text{std}^2) where
std=gain×2fan_in+fan_out\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}
Also known as Glorot initialization.
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- gain (float) – an optional scaling factor
- generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.xavier_normal_(w)
torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu', generator=None)[source]#
Fill the input Tensor with values using a Kaiming uniform distribution.
The method is described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015). The resulting tensor will have values sampled fromU(−bound,bound)\mathcal{U}(-\text{bound}, \text{bound}) where
bound=gain×3fan_mode\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
Also known as He initialization.
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- a (float) – the negative slope of the rectifier used after this layer (only used with
'leaky_relu') - mode (Literal[ 'fan_in' , 'fan_out' ]) – either
'fan_in'(default) or'fan_out'. Choosing'fan_in'preserves the magnitude of the variance of the weights in the forward pass. Choosing'fan_out'preserves the magnitudes in the backwards pass. - nonlinearity (Literal[ 'linear' , 'conv1d' , 'conv2d' , 'conv3d' , 'conv_transpose1d' , 'conv_transpose2d' , 'conv_transpose3d' , 'sigmoid' , 'tanh' , 'relu' , 'leaky_relu' , 'selu' ]) – the non-linear function (nn.functional name), recommended to use only with
'relu'or'leaky_relu'(default). - generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.kaiming_uniform_(w, mode="fan_in", nonlinearity="relu")
Note
Be aware that fan_in and fan_out are calculated assuming that the weight matrix is used in a transposed manner, (i.e., x @ w.T in Linear layers, where w.shape = [fan_out, fan_in]). This is important for correct initialization. If you plan to use x @ w, where w.shape = [fan_in, fan_out], pass in a transposed weight matrix, i.e. nn.init.kaiming_uniform_(w.T, ...).
torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu', generator=None)[source]#
Fill the input Tensor with values using a Kaiming normal distribution.
The method is described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015). The resulting tensor will have values sampled fromN(0,std2)\mathcal{N}(0, \text{std}^2) where
std=gainfan_mode\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}
Also known as He initialization.
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- a (float) – the negative slope of the rectifier used after this layer (only used with
'leaky_relu') - mode (Literal[ 'fan_in' , 'fan_out' ]) – either
'fan_in'(default) or'fan_out'. Choosing'fan_in'preserves the magnitude of the variance of the weights in the forward pass. Choosing'fan_out'preserves the magnitudes in the backwards pass. - nonlinearity (Literal[ 'linear' , 'conv1d' , 'conv2d' , 'conv3d' , 'conv_transpose1d' , 'conv_transpose2d' , 'conv_transpose3d' , 'sigmoid' , 'tanh' , 'relu' , 'leaky_relu' , 'selu' ]) – the non-linear function (nn.functional name), recommended to use only with
'relu'or'leaky_relu'(default). - generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.kaiming_normal_(w, mode="fan_out", nonlinearity="relu")
Note
Be aware that fan_in and fan_out are calculated assuming that the weight matrix is used in a transposed manner, (i.e., x @ w.T in Linear layers, where w.shape = [fan_out, fan_in]). This is important for correct initialization. If you plan to use x @ w, where w.shape = [fan_in, fan_out], pass in a transposed weight matrix, i.e. nn.init.kaiming_normal_(w.T, ...).
torch.nn.init.trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0, generator=None)[source]#
Fill the input Tensor with values drawn from a truncated normal distribution.
The values are effectively drawn from the normal distribution N(mean,std2)\mathcal{N}(\text{mean}, \text{std}^2)with values outside [a,b][a, b] redrawn until they are within the bounds. The method used for generating the random values works best when a≤mean≤ba \leq \text{mean} \leq b.
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- mean (float) – the mean of the normal distribution
- std (float) – the standard deviation of the normal distribution
- a (float) – the minimum cutoff value
- b (float) – the maximum cutoff value
- generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.trunc_normal_(w)
torch.nn.init.orthogonal_(tensor, gain=1, generator=None)[source]#
Fill the input Tensor with a (semi) orthogonal matrix.
Described in Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe, A. et al. (2013). The input tensor must have at least 2 dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened.
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor, where n≥2n \geq 2
- gain (float) – optional scaling factor
- generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.orthogonal_(w)
torch.nn.init.sparse_(tensor, sparsity, std=0.01, generator=None)[source]#
Fill the 2D input Tensor as a sparse matrix.
The non-zero elements will be drawn from the normal distributionN(0,0.01)\mathcal{N}(0, 0.01), as described in Deep learning via Hessian-free optimization - Martens, J. (2010).
Parameters
- tensor (Tensor) – an n-dimensional torch.Tensor
- sparsity (float) – The fraction of elements in each column to be set to zero
- std (float) – the standard deviation of the normal distribution used to generate the non-zero values
- generator (Optional_[_Generator]) – the torch Generator to sample from (default: None)
Return type
Examples
w = torch.empty(3, 5) nn.init.sparse_(w, sparsity=0.1)