numpy.searchsorted — NumPy v1.13 Manual (original) (raw)
numpy. searchsorted(a, v, side='left', sorter=None)[source]¶
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the indices, the order of a would be preserved.
| Parameters: | a : 1-D array_like Input array. If sorter is None, then it must be sorted in ascending order, otherwise sorter must be an array of indices that sort it. v : array_like Values to insert into a. side : {‘left’, ‘right’}, optional If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of a). sorter : 1-D array_like, optional Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort. New in version 1.7.0. |
|---|---|
| Returns: | indices : array of ints Array of insertion points with the same shape as v. |
See also
Return a sorted copy of an array.
Produce histogram from 1-D data.
Notes
Binary search is used to find the required insertion points.
As of NumPy 1.4.0 searchsorted works with real/complex arrays containingnan values. The enhanced sort order is documented in sort.
Examples
np.searchsorted([1,2,3,4,5], 3) 2 np.searchsorted([1,2,3,4,5], 3, side='right') 3 np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]) array([0, 5, 1, 2])