numpy.bitwise_or — NumPy v1.15 Manual (original) (raw)
numpy. bitwise_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, _subok=True_[, signature, _extobj_]) = <ufunc 'bitwise_or'>¶
Compute the bit-wise OR of two arrays element-wise.
Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator |.
| Parameters: | x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see theufunc docs. |
|---|---|
| Returns: | out : ndarray or scalar Result. This is a scalar if both x1 and x2 are scalars. |
Examples
The number 13 has the binaray representation 00001101. Likewise, 16 is represented by 00010000. The bit-wise OR of 13 and 16 is then 000111011, or 29:
np.bitwise_or(13, 16) 29 np.binary_repr(29) '11101'
np.bitwise_or(32, 2) 34 np.bitwise_or([33, 4], 1) array([33, 5]) np.bitwise_or([33, 4], [1, 2]) array([33, 6])
np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), ... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) np.bitwise_or([True, True], [False, True]) array([ True, True])