numpy.ma.mask_rowcols — NumPy v1.15 Manual (original) (raw)

numpy.ma. mask_rowcols(a, axis=None)[source]

Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the_axis_ parameter.

Parameters: a : array_like, MaskedArray The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with mask set to nomask (False). Must be a 2D array. axis : int, optional Axis along which to perform the operation. If None, applies to a flattened version of the array.
Returns: a : MaskedArray A modified version of the input array, masked depending on the value of the axis parameter.
Raises: NotImplementedError If input array a is not 2D.

See also

mask_rows

Mask rows of a 2D array that contain masked values.

mask_cols

Mask cols of a 2D array that contain masked values.

masked_where

Mask where a condition is met.

Notes

The input array’s mask is modified by this function.

Examples

import numpy.ma as ma a = np.zeros((3, 3), dtype=int) a[1, 1] = 1 a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) a = ma.masked_equal(a, 1) a masked_array(data = [[0 0 0] [0 -- 0] [0 0 0]], mask = [[False False False] [False True False] [False False False]], fill_value=999999) ma.mask_rowcols(a) masked_array(data = [[0 -- 0] [-- -- --] [0 -- 0]], mask = [[False True False] [ True True True] [False True False]], fill_value=999999)