numpy.trapz β€” NumPy v1.15 Manual (original) (raw)

numpy. trapz(y, x=None, dx=1.0, axis=-1)[source]ΒΆ

Integrate along the given axis using the composite trapezoidal rule.

Integrate y (x) along given axis.

Parameters: y : array_like Input array to integrate. x : array_like, optional The sample points corresponding to the y values. If x is None, the sample points are assumed to be evenly spaced dx apart. The default is None. dx : scalar, optional The spacing between sample points when x is None. The default is 1. axis : int, optional The axis along which to integrate.
Returns: trapz : float Definite integral as approximated by trapezoidal rule.

Notes

Image [2] illustrates trapezoidal rule – y-axis locations of points will be taken from y array, by default x-axis distances between points will be 1.0, alternatively they can be provided with x array or with dx scalar. Return value will be equal to combined area under the red lines.

References

[1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule
[2] (1, 2) Illustration image:http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

Examples

np.trapz([1,2,3]) 4.0 np.trapz([1,2,3], x=[4,6,8]) 8.0 np.trapz([1,2,3], dx=2) 8.0 a = np.arange(6).reshape(2, 3) a array([[0, 1, 2], [3, 4, 5]]) np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) np.trapz(a, axis=1) array([ 2., 8.])