numpy.random.beta — NumPy v1.16 Manual (original) (raw)

numpy.random. beta(a, b, size=None)

Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function

f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
(1 - x)^{\beta - 1},

where the normalisation, B, is the beta function,

B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
(1 - t)^{\beta - 1} dt.

It is often seen in Bayesian inference and order statistics.

Parameters: a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), thenm * n * k samples are drawn. If size is None (default), a single value is returned if a and b are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.
Returns: out : ndarray or scalar Drawn samples from the parameterized beta distribution.