numpy.seterr — NumPy v2.2 Manual (original) (raw)
numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)[source]#
Set how floating-point errors are handled.
Note that operations on integer scalar types (such as int16) are handled like floating point, and are affected by these settings.
Parameters:
all{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Set treatment for all types of floating-point errors at once:
- ignore: Take no action when the exception occurs.
- warn: Print a RuntimeWarning (via the Python warningsmodule).
- raise: Raise a FloatingPointError.
- call: Call a function specified using the seterrcall function.
- print: Print a warning directly to
stdout
. - log: Record error in a Log object specified by seterrcall.
The default is not to change the current behavior.
divide{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Treatment for division by zero.
over{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Treatment for floating-point overflow.
under{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Treatment for floating-point underflow.
invalid{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Treatment for invalid floating-point operation.
Returns:
old_settingsdict
Dictionary containing the old settings.
Notes
The floating-point exceptions are defined in the IEEE 754 standard [1]:
- Division by zero: infinite result obtained from finite numbers.
- Overflow: result too large to be expressed.
- Underflow: result so close to zero that some precision was lost.
- Invalid operation: result is not an expressible number, typically indicates that a NaN was produced.
Examples
import numpy as np orig_settings = np.seterr(all='ignore') # seterr to known value np.int16(32000) * np.int16(3) np.int16(30464) np.seterr(over='raise') {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'} old_settings = np.seterr(all='warn', over='raise') np.int16(32000) * np.int16(3) Traceback (most recent call last): File "", line 1, in FloatingPointError: overflow encountered in scalar multiply
old_settings = np.seterr(all='print') np.geterr() {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'} np.int16(32000) * np.int16(3) np.int16(30464) np.seterr(**orig_settings) # restore original {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}