ifft — SciPy v1.15.3 Manual (original) (raw)
scipy.fftpack.
scipy.fftpack.ifft(x, n=None, axis=-1, overwrite_x=False)[source]#
Return discrete inverse Fourier transform of real or complex sequence.
The returned complex array contains y(0), y(1),..., y(n-1)
, where
y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()
.
Parameters:
xarray_like
Transformed data to invert.
nint, optional
Length of the inverse Fourier transform. If n < x.shape[axis]
,x is truncated. If n > x.shape[axis]
, x is zero-padded. The default results in n = x.shape[axis]
.
axisint, optional
Axis along which the ifft’s are computed; the default is over the last axis (i.e., axis=-1
).
overwrite_xbool, optional
If True, the contents of x can be destroyed; the default is False.
Returns:
ifftndarray of floats
The inverse discrete Fourier transform.
Notes
Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.
This function is most efficient when n is a power of two, and least efficient when n is prime.
If the data type of x is real, a “real IFFT” algorithm is automatically used, which roughly halves the computation time.
Examples
from scipy.fftpack import fft, ifft import numpy as np x = np.arange(5) np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy. True